WP_Term Object
(
    [term_id] => 44
    [name] => TechInsights
    [slug] => techinsights
    [term_group] => 0
    [term_taxonomy_id] => 44
    [taxonomy] => category
    [description] => 
    [parent] => 386
    [count] => 103
    [filter] => raw
    [cat_ID] => 44
    [category_count] => 103
    [category_description] => 
    [cat_name] => TechInsights
    [category_nicename] => techinsights
    [category_parent] => 386
)
            
image001 (16)
WP_Term Object
(
    [term_id] => 44
    [name] => TechInsights
    [slug] => techinsights
    [term_group] => 0
    [term_taxonomy_id] => 44
    [taxonomy] => category
    [description] => 
    [parent] => 386
    [count] => 103
    [filter] => raw
    [cat_ID] => 44
    [category_count] => 103
    [category_description] => 
    [cat_name] => TechInsights
    [category_nicename] => techinsights
    [category_parent] => 386
)

No! TSMC does not Make 90% of Advanced Silicon

No! TSMC does not Make 90% of Advanced Silicon
by Scotten Jones on 03-11-2024 at 2:00 pm

Throughout the debate on fab incentives and the Chips Act I keep seeing comments like; TSMC makes >90% of all advanced silicon, or sometimes Taiwan make >90% of all advanced silicon. This kind of ill-defined and grossly inaccurate statement drives me crazy. I just saw someone make that same claim in the SemiWiki forums and I decided it was time to comment on this.

Let’s start with defining what is an advanced semiconductor. Since the specific comment is about TSMC, let’s start with the TSMC definition, TSMC breaks out 7nm and below as advanced. This is a good break point in logic because Samsung and TSMC 7nm both have densities of approximately 100 million transistor per millimeter squared (MTx/mm2). Intel 10nm also has approximately 100 MTx/mm2, therefore we can count Samsung and TSMC 7nm and below and Intel 10nm and below.

That all works for logic, but this whole discussion ignores other advanced semiconductors. I would argue that there are three truly leading edge advanced semiconductors in the world today where state-of-the-art equipment is being pushed to the limits of what is achievable: 3DNAND, DRAM, and Logic. In each case there are three or more of the worlds largest semiconductor companies pushing the technology as far and as fast as humanely possible. Yes, the challenges are different, 3DNAND has relatively easy lithography requirements but deposition and etching requirements are absolutely at the edge of what is achievable. DRAM has  a mixture of lithography, materials and high aspect ratio challenges. Logic has the most EUV layers and process steps but they are all equally difficult to successfully produce with good yield.

Including 3DNAND and DRAM means we need an “advanced semiconductor” limits for these two processes. When 7nm was first being introduced for logic, 3DNAND was at the 96/92 layer generation and DRAM was at 1y. We will use those as the limits for advanced semiconductors.

In order to complete this analysis without spending man-days that I don’t have to spare, I simply added up the worldwide installed capacity for 3DNAND 96/92L layers and greater, DRAM 1y and smaller and Logic 7nm (i10nm) and smaller. Furthermore I broke out logic into TSMC and other.

Figure 1 illustrates the worldwide installed capacity in percentage broken out by those categories.

tsmc advanced silicon

Figure 1. Worldwide Advanced Silicon Installed Capacity by Category.

From figure 1 it can be seen that TSMC only represents 12% of worldwide “advanced silicon”, way off the 90% number being thrown around. Now utilization could change these numbers some and I haven’t included that due to time constraints, but I don’t think it would change this that much and as the memory sector recovers it will become a non issue.

I also looked at this a second way which is just worldwide advanced logic, see figure 2.

Slide2

Figure 2. Worldwide Advanced Logic Installed Capacity by Category.

From figure 2 we can see that even when we look at Advanced Logic TSMC is only 64% versus “90%”.

The only way we would get to 90% is if we defined “advanced silicon” as 3nm logic. This would require a good definition of what 3nm logic is. On a density basis TSMC is the only 3nm logic process in the world, Samsung and Intel are really 5nm processes on a density basis, although Intel i3 is in my estimation the highest performing process available.

In conclusion, TSMC actually only makes up 12% of worldwide Advanced Silicon and only 64% of Advanced Logic. This is not to minimize the importance of TSMC to the global electronics supply chain, but when debating things as important as the worldwide semiconductor supply chain we should at least get the numbers right.

Also Read:

ISS 2024 – Logic 2034 – Technology, Economics, and Sustainability

How Disruptive will Chiplets be for Intel and TSMC?

2024 Big Race is TSMC N2 and Intel 18A

Share this post via:

Comments

26 Replies to “No! TSMC does not Make 90% of Advanced Silicon”

You must register or log in to view/post comments.