Lithography Resolution Limits: Paired Features

Lithography Resolution Limits: Paired Features
by Fred Chen on 04-07-2020 at 10:00 am

Lithography Resolution Limits Paired Features

As any semiconductor process advances to the next generation or “node”, a sticky point is how to achieve the required higher resolution. As noted in another article [1], multipatterning (the required use of repeated patterning steps for a particular feature) has been practiced already for many years, and many have… Read More


Low Energy Electrons Set the Limits for EUV Lithography

Low Energy Electrons Set the Limits for EUV Lithography
by Fred Chen on 03-25-2020 at 6:00 am

Low Energy Electrons Set the Limits for EUV Lithography

EUV lithography is widely perceived to be the obvious choice to replace DUV lithography due to the shorter wavelength(s) used. However, there’s a devil in the details, or a catch if you will.

Electrons have the last word
The resist exposure is completed by the release of electrons following the absorption of the EUV photon.… Read More


The Need for Low Pupil Fill in EUV Lithography

The Need for Low Pupil Fill in EUV Lithography
by Fred Chen on 03-15-2020 at 10:00 am

The Need for Low Pupil Fill in EUV Lithography 1

Extreme ultraviolet (EUV) lithography targets sub-20 nm resolution using a wavelength range of ~13.3-13.7 nm (with some light including DUV outside this band as well) and a reflective ring-field optics system. ASML has been refining the EUV tool platform, starting with the NXE:3300B, the very first platform with a numerical

Read More

A Forbidden Pitch Combination at Advanced Lithography Nodes

A Forbidden Pitch Combination at Advanced Lithography Nodes
by Fred Chen on 03-06-2020 at 10:00 am

A Forbidden Pitch Combination at Advanced Lithography Nodes

The current leading edge of advanced lithography nodes (e.g., “7nm” or “1Z nm”) features pitches (center-center distances between lines) in the range of 30-40 nm. Whether EUV (13.5 nm wavelength) or ArF (193 nm wavelength) lithography is used, one thing for certain is that the minimum imaged pitch … Read More