Horizontal and Vertical Line Shadowing Across Slit in Low-NA and High-NA EUV Lithography Systems

Horizontal and Vertical Line Shadowing Across Slit in Low-NA and High-NA EUV Lithography Systems
by Fred Chen on 01-11-2022 at 6:00 am

EUV shadowing across slit

EUV lithography systems continue to be the source of much hope for continuing the pace of increasing device density on wafers per Moore’s Law. Recently, although EUV systems were originally supposed to help the industry avoid much multipatterning, it has not turned out to be the case [1,2]. The main surprise has been the

Read More

Pattern Shifts Induced by Dipole-Illuminated EUV Masks

Pattern Shifts Induced by Dipole-Illuminated EUV Masks
by Fred Chen on 12-19-2021 at 10:00 am

Pattern Shifts Induced by Dipole Illuminated EUV Masks

As EUV lithography is being targeted towards pitches of 30 nm or less, fundamental differences from conventional DUV lithography become more and more obvious. A big difference is in the mask use. Unlike other photolithography masks, EUV masks are absorber patterns on a reflective multilayer rather than a transparent substrate.… Read More


Revisiting EUV Lithography: Post-Blur Stochastic Distributions

Revisiting EUV Lithography: Post-Blur Stochastic Distributions
by Fred Chen on 11-14-2021 at 10:00 am

Revisiting EUV Lithography Post Blur Stochastic Distributions

In previous articles, I had looked at EUV stochastic behavior [1-2], primarily in terms of the low photon density resulting in shot noise, described by the Poisson distribution [3]. The role of blur to help combat the randomness of EUV photon absorption and secondary electron generation and migration was also recently considered… Read More


The Challenge of Working with EUV Doses

The Challenge of Working with EUV Doses
by Fred Chen on 10-25-2021 at 2:00 pm

The Challenge of Working with EUV Doses

Recently, a patent application from TSMC [1] revealed target EUV doses used in the range of 30-45 mJ/cm2. However, it was also acknowledged in the same application that such doses were too low to prevent defects and roughness. Recent studies [2,3] have shown that by considering photon density along with blur, the associated shot… Read More


Blur, not Wavelength, Determines Resolution at Advanced Nodes

Blur, not Wavelength, Determines Resolution at Advanced Nodes
by Fred Chen on 10-05-2021 at 10:00 am

Blur not Wavelength Determines Resolution at Advanced Nodes

Lithography has been the driving force for shrinking feature sizes for decades, and the most easily identified factor behind this trend is the reduction of wavelength. G-line (436 nm wavelength) was used for 0.5 um in the late 1980s [1], and I-line (365 nm wavelength) was used down to 0.3 um in the 1990s [2]. Then began the era of deep-ultraviolet… Read More


Cautions In Using High-NA EUV

Cautions In Using High-NA EUV
by Fred Chen on 09-22-2021 at 6:00 am

Cautions In Using High NA EUV

High-NA EUV has received a lot of attention ever since Intel put the spotlight on its receiving the first 0.55 NA EUV tool from ASML [1], expected in 2025. EUV itself has numerous issues which have been enumerated by myself and others, most notoriously the stochastic defects issue. There are also a host of issues related to the propagation… Read More


Stochastic Effects from Photon Distribution Entropy in High-k1 EUV Lithography

Stochastic Effects from Photon Distribution Entropy in High-k1 EUV Lithography
by Fred Chen on 08-04-2021 at 10:00 am

Stochastic Effects from Photon Distribution Entropy in High k1 EUV Lithography

Recent advances in EUV lithography have largely focused on “low-k1” imaging, i.e., features with pitches less than the wavelength divided by the numerical aperture (k1<0.5). With a nominal wavelength of 13.5 nm and a numerical aperture of 0.33, this means sub-40 nm pitches. It is naturally expected that larger… Read More


Stochastic Origins of EUV Feature Edge Roughness

Stochastic Origins of EUV Feature Edge Roughness
by Fred Chen on 07-11-2021 at 10:00 am

Stochastic Origins of EUV Feature Edge Roughness

Due to the higher energy of EUV (13.3-13.7 nm wavelength) compared to ArF (193 nm wavelength) light, images produced by EUV are more susceptible to photon shot noise.

Figure 1. (Left) 40 nm dense (half-pitch) line image projected onto wafer at 35 mJ/cm2; (Right) 20 nm dense (half-pitch) line image projected onto wafer at 70 mJ/cm2.Read More


Contrast Reduction vs. Photon Noise in EUV Lithography

Contrast Reduction vs. Photon Noise in EUV Lithography
by Fred Chen on 05-30-2021 at 6:00 am

Contrast Reduction vs. Photon Noise in EUV Lithography

The stochastic behavior of images formed in EUV lithography has already been highlighted by a number of authors [1-3]. How serious it appears depends on the pixel size with which the photons are bunched. Generally, though, for features of around 20 nm or less, even 1 nm can have at least a +/- 15% gradient across it, which is still a

Read More

SALELE Double Patterning for 7nm and 5nm Nodes

SALELE Double Patterning for 7nm and 5nm Nodes
by Fred Chen on 03-28-2021 at 6:00 am

SALELE Double Patterning for 7nm and 5nm Nodes 4

In this article, we will explore the use of self-aligned litho-etch-litho-etch (SALELE) double patterning for BEOL metal layers in the 7nm node (40 nm minimum metal pitch [1]) with DUV, and 5nm node (28 nm minimum metal pitch [2]) with EUV. First, we mention the evidence that this technique is being used; Xilinx [3] disclosed the… Read More