The Significance of Point Spread Functions with Stochastic Behavior in Electron-Beam Lithography

The Significance of Point Spread Functions with Stochastic Behavior in Electron-Beam Lithography
by Fred Chen on 10-31-2023 at 10:00 am

Electron Beam Lithography

Electron beam lithography is commercially used to directly write submicron patterns onto advanced node masks. With the advent of EUV masks and nanometer-scale NIL (nanoimprint lithography), multi-beam writers are now being used, compensating the ultralow throughput of a single high-resolution electron beam with the use… Read More


Extension of DUV Multipatterning Toward 3nm

Extension of DUV Multipatterning Toward 3nm
by Fred Chen on 10-02-2023 at 8:00 am

Extension of DUV Multipatterning Toward 3nm

China’s recent achievement of a 7nm-class foundry node using only DUV lithography [1] raises the question of how far DUV lithography can be extended by multipatterning. A recent publication at CSTIC 2023 indicates that Chinese groups are currently looking at extension of DUV-based multipatterning to 5nm, going so far… Read More


Stochastic Model for Acid Diffusion in DUV Chemically Amplified Resists

Stochastic Model for Acid Diffusion in DUV Chemically Amplified Resists
by Fred Chen on 09-11-2023 at 8:00 am

Stochastic Model for Acid Diffusion in DUV Chemically Amplified Resists 1

Recent articles have focused much effort on studying the stochastic behavior of secondary electron exposure of EUV resists [1-4]. Here, we consider the implications of extending similar treatments to DUV lithography.

Basic Model Setup

As before, the model uses pixel-by-pixel calculations of absorbed photon dose, followed… Read More


Modeling EUV Stochastic Defects with Secondary Electron Blur

Modeling EUV Stochastic Defects with Secondary Electron Blur
by Fred Chen on 08-30-2023 at 8:00 am

Modeling EUV Stochastic Defects With Secondary Electron Blur

Extreme ultraviolet (EUV) lithography is often represented as benefiting from the 13.5 nm wavelength (actually it is a range of wavelengths, mostly ~13.2-13.8 nm), when actually it works through the action of secondary electrons, electrons released by photoelectrons which are themselves released from ionization by absorbed… Read More


Enhanced Stochastic Imaging in High-NA EUV Lithography

Enhanced Stochastic Imaging in High-NA EUV Lithography
by Fred Chen on 08-21-2023 at 8:00 am

Enhanced Stochastic Imaging in High NA EUV Lithography

High-NA EUV lithography is the anticipated new lithography technology to be introduced for the 2nm node. Essentially, it replaces the 0.33 numerical aperture of current EUV systems with a higher 0.55 numerical aperture (NA). This allows the projection of smaller spot sizes and smaller pitches, roughly 60% smaller compared … Read More


Application-Specific Lithography: Via Separation for 5nm and Beyond

Application-Specific Lithography: Via Separation for 5nm and Beyond
by Fred Chen on 08-02-2023 at 8:00 am

1689394958554

With metal interconnect pitches shrinking in advanced technology nodes, the center-to-center (C2C) separations between vias are also expected to shrink. For a 5/4nm node minimum metal pitch of 28 nm, we should expect vias separated by 40 nm (Figure 1a). Projecting to 3nm, a metal pitch of 24 nm should lead us to expect vias separated… Read More


NILS Enhancement with Higher Transmission Phase-Shift Masks

NILS Enhancement with Higher Transmission Phase-Shift Masks
by Fred Chen on 07-24-2023 at 8:00 am

Figure 1. NILS is improved

In the assessment of wafer lithography processes, normalized image log-slope (NILS) gives the % change in width for a given % change in dose [1,2]. A nominal NILS value of 2 indicates 10% change in linewidth for 10% change in dose; the % change in linewidth is inversely proportional to the NILS. In a previous article [2], it was shown… Read More


Assessing EUV Wafer Output: 2019-2022

Assessing EUV Wafer Output: 2019-2022
by Fred Chen on 06-26-2023 at 6:00 am

Assessing EUV Wafer Output 2019 2022

At the 2023 SPIE Advanced Lithography and Patterning conference, ASML presented an update on its EUV lithography systems in the field [1]. The EUV wafer exposure output was presented and is shown below in table form:

From this information, we can attempt to extract and assess the EUV wafer output per quarter. First, since there … Read More


Application-Specific Lithography: 28 nm Pitch Two-Dimensional Routing

Application-Specific Lithography: 28 nm Pitch Two-Dimensional Routing
by Fred Chen on 06-19-2023 at 6:00 am

Brightfield (red) and darkfield (purple) sidelobes in 84 nm

Current 1a-DRAM and 5/4nm foundry nodes have minimum pitches in the 28 nm pitch range. The actual 28 nm pitch patterns are one-dimensional active area fins (for both DRAM and foundry) as well as one-dimensional lower metal lines (in the case of foundry). One can imagine that, for a two-dimensional routing pattern, both horizontal… Read More


A Primer on EUV Lithography

A Primer on EUV Lithography
by Fred Chen on 06-02-2023 at 6:00 am

Litho historical trend Fig 1

Extreme ultraviolet (EUV) lithography systems are the most advanced lithography systems in use today. This article is a basic primer on this important yet complex technology.

The Goal: A Smaller Wavelength

The introduction of 13.5 nm wavelength continues a trend the semiconductor industry had been following a wavelength reduction… Read More