Electrical Reliability Verification – Now At FullChip

Electrical Reliability Verification – Now At FullChip
by Alex Tan on 04-25-2018 at 12:00 pm

Advanced process technology offers both device and interconnect scaling for increased design density and higher performance while invoking also significant implementation complexities. Aside from the performance, power and area (PPA) aspects, designer is getting entrenched with the need of tackling more reliability … Read More


Robust Reliability Verification – A Critical Addition To Baseline Checks

Robust Reliability Verification – A Critical Addition To Baseline Checks
by Alex Tan on 03-01-2018 at 12:00 pm

Design process retargeting is acommon recurrence based on scaling orBOM(Bill-Of-Material) cost improvement needs. This occursnot only with the availability of foundry process refresh to a more advanced node,but also to any new derivative process node tailored towards matching design complexity, power profile or reliabilityRead More


Noise, The Need for Speed, and Machine Learning

Noise, The Need for Speed, and Machine Learning
by Riko Radojcic on 05-08-2017 at 7:00 am

Technology trends make the concerns with electronic noise a primary constraint that impacts many mainstream products, driving the need for “Design-for-Noise” practices. That is, scaling, and the associated reduction in the device operating voltage and current, in effect magnifies the relative importance of non-scalableRead More


FinFET Reliability Analysis with Device Self-Heating

FinFET Reliability Analysis with Device Self-Heating
by Tom Dillinger on 10-22-2015 at 12:00 pm

At the recent TSMC OIP symposium, a collaborative presentation by Synopsys and Xilinx highlighted the importance of incorporating the local FinFET device self-heating temperature increase on the acceleration of device reliability mechanisms.… Read More


Predicting Lifetime of Analog ICs

Predicting Lifetime of Analog ICs
by Pawan Fangaria on 06-22-2015 at 12:30 pm

With the increase of transistors per unit area, high density interconnects and manufacturing variability at lower nodes, the electronic devices have become more vulnerable to failures. The devices that operate under extreme conditions such as automotive devices that operate at high temperatures need to be robust enough to… Read More


Stop TDDB from getting through peanut butter

Stop TDDB from getting through peanut butter
by Don Dingee on 01-24-2014 at 6:00 pm

There are a few dozen causes of semiconductor failure. Most can be lumped into one of three categories: material defects, process or workmanship issues, or environmental or operational overstress. Even when all those causes are carefully mitigated, one factor is limiting reliability more as geometries shrink – and it… Read More