IC Mask SemiWiki Webinar Banner
WP_Term Object
(
    [term_id] => 157
    [name] => EDA
    [slug] => eda
    [term_group] => 0
    [term_taxonomy_id] => 157
    [taxonomy] => category
    [description] => Electronic Design Automation
    [parent] => 0
    [count] => 4037
    [filter] => raw
    [cat_ID] => 157
    [category_count] => 4037
    [category_description] => Electronic Design Automation
    [cat_name] => EDA
    [category_nicename] => eda
    [category_parent] => 0
)

Four Industries that will be Transformed by GaN

Four Industries that will be Transformed by GaN
by Alex Lidow on 09-02-2015 at 4:00 pm

 In a previous post we discussed a few automotive applications that will be big markets for GaN technology. But this is just a small part of the GaN story!

GaN transistors such as eGaN FETs from EPC are today available with performance 10 times better than the best commercial silicon. What happens when several devices are integrated to create asystem on a single chip? What happens when the performance of that chip is 100 times better than silicon?

In this posting we will look out 5 to 10 years and see how a transformative change in semiconductor technology is transformative to our world in almost every way.

Transforming Space

Power converters used in harsh environments, such as space, high-altitude flight, or high-reliability military applications must be resistant to damage or malfunctions caused by radiation. eGaN FETs today perform 40 times better electricallywhile being able to withstand 10 times the radiation compared with the aging Rad Hard power MOSFET. This enables entirely new architectures for satellite power and data transmission. Elon Musk, CEO of SpaceX, has set as his mission to reduce the cost of putting objects in space by a factor of 10. With eGaN technology applied to satellites we can reduce the size of the electronics, eliminate the shielding required, and greatly improve the performance of the data communications. This eliminates solar panels, makes the entire system smaller and lighter weight, and extends the life of the satellite. A factor of two reduction in weight is within our reach with today’s technology, whereas a factor of 10 is possible when eGaN technology is used to produce entire systems on a single chip. Multiply the impact of SpaceX with eGaN technology and we will change the way we use space and accelerate the exploration (and possible colonization?) of our universe.

Transforming the Machine Interface

LiDAR uses high speed pulsed lasers to rapidly create a three dimensional image or map of a surrounding area. One of the earliest adopters of this technology was the “driverless” car. Today’s eGaN FETs are enabling new and broader applications such as 3D printing, real-time motion detection for augmented reality glasses, computers that respond to hand gestures as opposed to touch screens, and fully autonomous vehicles. As eGaN technology evolves, LiDAR can be further improved in both resolution and cost. Projects are already underway to include “3D Awareness” in our cell phones. Imagine if phones could understand the space around us. We will be able to get directions in a new, more comprehensive way. An iPhone today can provide the location of the building you desire, but with LiDAR, 3-D mapping could lead you straight to a specific office.

Transforming the Use of Electricity
Wires suck. Today, we need wires to supply power to our ever-growing collection of electrically-powered gadgets. For those gadgets that are so completely indispensable, we need to take them with us at all times, and they need batteries that must be recharged all-too-frequently. Expected in late 2015, wireless power systems using eGaN technology will begin to unload this wired burden by providing energy wirelessly to charge cell phones and tablets. By integrating thin transmission coils in the floor tiles and the walls of buildings and homes, the need for wall sockets will be eliminated altogether! This same wireless power technology can be used to charge electric vehicles when parked over a transmitting coil embedded in the floor of a garage. A project is underway to embed wireless chargers at bus stops. Eventually, in a one-minute stop, a bus can get enough charge to drive a mile to the next bus stop. This could eliminate the need for most of the heavy batteries and overhead electrical systems that burden electric buses today.

eGaN technology makes possible the efficient transmission of electricity at safe frequencies that are difficult for their silicon transistor ancestors. Taking eGaN technology to higher voltages and higher frequencies extends the wireless power transfer distance. Integrating eGaN technology into complete systems on a chip enable wireless power systems to be embedded into almost every device that consumes electricity.

Transforming Medicine
We are all getting older every day, and, as we age, we develop more opportunities for frailties and chronic health problems. Today there are major advances in fields such as implantable systems, imaging, and prosthetics that are enabled by eGaN technology.

Wireless power is already having an impact on implantable systems such as heart pumps. Beyond just artificial hearts, many other medical systems can also benefit. As Dr. Pramod Bonde of the University of Pittsburg Medical Center speculated, “[wireless power]can be leveraged to simplify sensor systems, to power medical implants and reduce electrical wiring in day-to-day care of the patients.”

But it’s not just eGaN technology in wireless power that is transforming medicine. Imaging technology is also improving by leaps and bounds! The resolution of MRI machines is being enhanced through the development of smaller and more efficient sensing coils using eGaN FETs and ICs. Diagnostic colonoscopies are about to become a thing of the past due to today’s eGaN FETs. These types of non-invasive imaging breakthroughs significantly reduce the cost of health care through early warning and non-invasive diagnostics. As we integrate entire systems on a single eGaN chip, miniaturization and image resolution improves the standard of care while medical costs come down.

eGaN Technology –Transforming the Future
In this posting, we talked about a few of the transformations that will be enabled as eGaN technology evolves. EPC is taking the 10-times gap in performance between eGaN FETs and MOSFETs and improving it to a 1000-times gap. This technology is also being applied to integrated circuits made be EPC in eGaN technology. EPC is pursing parallel paths – discrete power semiconductors and fully integrated circuits that form building blocks for multiple applications, but will ultimately evolve into complete systems-on-a-chip for very high performance, low cost, and high value-added applications like the ones discussed above.

The eGaN journey has just begun!

Also read:

GaN Technology — Contributing to Medicine in No Small Way

Four Things a New Semiconductor Technology Must Have to be Disruptive
GaN Technology for the Connected Car

Share this post via:

Comments

0 Replies to “Four Industries that will be Transformed by GaN”

You must register or log in to view/post comments.