Mentor Automating Design Compliance with Power-Aware Simulation HyperLynx and Xpedition Flow

Mentor Automating Design Compliance with Power-Aware Simulation HyperLynx and Xpedition Flow
by Camille Kokozaki on 02-25-2019 at 12:00 pm

High-speed design requires addressing signal integrity (SI) and power integrity (PI) challenges. Power integrity has a frequency component. The Power Distribution Network (PDN) in designs has 2 different purposes: providing power to the chip, and acting as a power plane reference for transmission-line like propagating … Read More


Tools for Advanced Packaging Design Follow Moore’s Law, Too!

Tools for Advanced Packaging Design Follow Moore’s Law, Too!
by Tom Dillinger on 06-05-2017 at 9:00 am

There is an emerging set of advanced packaging technologies that enables unique product designs, with the capability to integrate multiple die, from potentially heterogeneous technologies. These “system-in-package” (SiP) offerings provide architects with the opportunity to optimize product performance, power, cost,… Read More


3D Product Design Collaboration in MCAD and ECAD Platforms

3D Product Design Collaboration in MCAD and ECAD Platforms
by Tom Dillinger on 04-25-2017 at 12:00 pm

Consumer electronics demand aggressive mechanical enclosure design — product volume, weight, shape, and connector access are all critical design optimization criteria. Mechanical CAD (MCAD) software platforms are used by product engineers to develop the enclosure definition — the integration of the PCB design… Read More


The 4C’s of PCB Design

The 4C’s of PCB Design
by Tom Dillinger on 04-20-2017 at 12:00 pm

The diamond jewelry industry encourages customers to focus on the 4C’s — cut, clarity, color, and carats. At the recent PCB Forum conducted by Mentor (a Siemens business) in Santa Clara, I learned that current system design flows also require an emphasis on the 4C’s — collaboration, concurrency, consistencyRead More


Automation for managed system-of-systems design

Automation for managed system-of-systems design
by Don Dingee on 10-26-2016 at 4:00 pm

Anybody who has done any bus & board system design knows the problem. Merchant boards typically have standardized pinouts (after years of haggling in standards organizations) for the backplane bus, and a group of user-defined pins for daughtercard I/O. Homegrown systems usually have a just-as-carefully defined proprietary… Read More


Rigid-Flex Cabling is Cool! (and requires unique EDA support)

Rigid-Flex Cabling is Cool! (and requires unique EDA support)
by Tom Dillinger on 08-15-2016 at 10:00 am

The three F’s of electronic product development are: form, fit, and function. Although the F/F/F assessment typically refers to the selection of the right component, it most definitely also refers to the selection of the proper cabling between assemblies. The requirements for cables are varied, and demanding: ability… Read More


Pathfinding to an Optimal Chip/Package/Board Implementation

Pathfinding to an Optimal Chip/Package/Board Implementation
by Tom Dillinger on 02-04-2016 at 4:00 pm

A new term has entered the vernacular of electronic design engineering — pathfinding. The complexity of the functionality to be integrated and the myriad of chip, package, and board technologies available make the implementation decision a daunting task. Pathfinding refers to the method by which the design space of technology… Read More


Chips and pins and layers within

Chips and pins and layers within
by Don Dingee on 03-25-2015 at 3:00 pm

After teams sweat the details of SoC and industrial design, they turn to printed circuit board designers for magic. Here are a pile of chips and passives, and a schematic for interconnecting them. This is how much physical space the board can occupy. Connectors have to be here, and here, and mounting holes there, and there. There … Read More


Sketch Router and auto-assist PCB layout

Sketch Router and auto-assist PCB layout
by Don Dingee on 03-31-2014 at 6:30 pm

Archaic tech metaphors abound, stuck in the psyche of users everywhere. We still “dial” numbers, long after the benefit of a short pull area code disappeared. (Humans could dial 1, 2, or 3 a lot faster on a rotary phone, and there were fewer dialpulses for central office switches to decode – thus big cities with more phone traffic like… Read More