A Realistic Electron Blur Function Shape for EUV Resist Modeling

A Realistic Electron Blur Function Shape for EUV Resist Modeling
by Fred Chen on 03-13-2025 at 10:00 am

EUV Image 4

Peak probability at zero distance actually makes no sense

In lithography, it is often stated that the best resolution that can be achieved depends on wavelength and numerical aperture (NA), but this actually only applies to the so-called “aerial” image. When the image is actually formed in the resist layer, it also depends on an… Read More


NILS Enhancement with Higher Transmission Phase-Shift Masks

NILS Enhancement with Higher Transmission Phase-Shift Masks
by Fred Chen on 07-24-2023 at 8:00 am

Figure 1. NILS is improved

In the assessment of wafer lithography processes, normalized image log-slope (NILS) gives the % change in width for a given % change in dose [1,2]. A nominal NILS value of 2 indicates 10% change in linewidth for 10% change in dose; the % change in linewidth is inversely proportional to the NILS. In a previous article [2], it was shown… Read More


Reality Checks for High-NA EUV for 1.x nm Nodes

Reality Checks for High-NA EUV for 1.x nm Nodes
by Fred Chen on 04-26-2023 at 6:00 am

Reality Checks for High NA EUV for 1.x nm Nodes

The “1.xnm” node on most roadmaps to indicate a 16-18 nm metal line pitch [1]. The center-to-center spacing may be expected to be as low as 22-26 nm (sqrt(2) times line pitch). The EXE series of EUV (13.5 nm wavelength) lithography systems from ASML feature a 0.55 “High” NA (numerical aperture), targeted… Read More


Can Attenuated Phase-Shift Masks Work For EUV?

Can Attenuated Phase-Shift Masks Work For EUV?
by Fred Chen on 04-18-2023 at 6:00 am

1679926948898

Normalized image log-slope (NILS) is probably the single most essential metric for describing lithographic image quality. It is defined as the slope of the log of intensity, multiplied by the linewidth [1], NILS = d(log I)/dx * w = w/I dI/dx.  Essentially, it gives the % change in width for a given % change in dose. This is particularly… Read More