Stochastic Effects Blur the Resolution Limit of EUV Lithography

Stochastic Effects Blur the Resolution Limit of EUV Lithography
by Fred Chen on 01-08-2025 at 6:00 am

Stochastic Effects Blur the Resolution Limit of EUV Lithography

Conventionally, the resolution limit of a lithography system with wavelength l and numerical aperture NA is given by half-pitch = 0.25 wavelength/NA. With the use of EUV lithography, however, electron blur needs to be added [1]. The impact of this blur is to reduce the contrast [2]. Blur reduces the modulation amplitude by a factor… Read More


Can LELE Multipatterning Help Against EUV Stochastics?

Can LELE Multipatterning Help Against EUV Stochastics?
by Fred Chen on 01-06-2025 at 6:00 am

Can LELE Multipatterning Help Against EUV Stochastics

Previously, I had indicated how detrimental stochastic effects at pitches below 50 nm should lead to reconsidering the practical resolution limit for EUV lithography [1]. This is no exaggeration, as stochastic effects have been observed for 24 nm half-pitch several years ago [2,3]. This then leads to the question of whether … Read More


Stochastic Pupil Fill in EUV Lithography

Stochastic Pupil Fill in EUV Lithography
by Fred Chen on 12-24-2024 at 6:00 am

Exposing EUV

Pupil fill tradeoff again

EUV lithography continues to be plagued by its stochastic nature.

This stochastic nature is most clearly portrayed by the random fluctuation of the absorbed photon number at a given location. For example, consider an absorbed dose of 10 mJ/cm2 amounts to 6.8 photons of energy 92 eV absorbed in a square … Read More


Application-Specific Lithography: Patterning 5nm 5.5-Track Metal by DUV

Application-Specific Lithography: Patterning 5nm 5.5-Track Metal by DUV
by Fred Chen on 08-08-2024 at 6:00 am

Application Specific Lithography I

At IEDM 2019, TSMC revealed two versions of 5nm standard cell layouts: a 5.5-track DUV-patterned version and a 6-track EUV-patterned version [1]. Although the metal pitches were not explicitly stated, later analyses of a 5nm product, namely, Apple’s A15 Bionic chip, revealed a cell height of 210 nm [2]. For the 6-track … Read More


Why NA is Not Relevant to Resolution in EUV Lithography

Why NA is Not Relevant to Resolution in EUV Lithography
by Fred Chen on 05-05-2024 at 8:00 am

Why NA is Not Relevant to Resolution in EUV Lithography

The latest significant development in EUV lithography technology is the arrival of High-NA systems. Theoretically, by increasing the numerical aperture, or NA, from 0.33 to 0.55, the absolute minimum half-pitch is reduced by 40%, from 10 nm to 6 nm. However, for EUV systems, we need to recognize that the EUV light (consisting … Read More


Huawei’s and SMIC’s Requirement for 5nm Production: Improving Multipatterning Productivity

Huawei’s and SMIC’s Requirement for 5nm Production: Improving Multipatterning Productivity
by Fred Chen on 04-23-2024 at 10:00 am

Self aligned blocking scheme

There has been much interest in Huawei’s and SMIC’s plans for 5nm production in the near future. Since there is no use of EUV in China, immersion DUV lithography (with a 76 nm pitch resolution) is expected to be used along with pitch quartering to achieve pitches in the 20-30 nm range expected for the 5nm and 3nm nodes [1].… Read More


Measuring Local EUV Resist Blur with Machine Learning

Measuring Local EUV Resist Blur with Machine Learning
by Fred Chen on 03-17-2024 at 10:00 am

Measuring Local EUV Resist Blur with Machine Learning

Resist blur remains a topic that is relatively unexplored in lithography. Blur has the effect of reducing the difference between the maximum and minimum doses in the local region containing the feature. Blur is particularly important for EUV lithography since EUV lithography is prone to stochastic fluctuations and also driven… Read More


Pinning Down an EUV Resist’s Resolution vs. Throughput

Pinning Down an EUV Resist’s Resolution vs. Throughput
by Fred Chen on 02-21-2024 at 8:00 am

Pinning Down an EUV Resist's Resolution

The majority of EUV production is on 5nm and 3nm node, implemented by late 2022. Metal oxide resists have not been brought into volume production yet [1,2], meaning that only organic chemically amplified resists (CARs) have been used instead until now. These resists have a typical absorption coefficient of 5/um [3,4], which means

Read More

Application-Specific Lithography: Avoiding Stochastic Defects and Image Imbalance in 6-Track Cells

Application-Specific Lithography: Avoiding Stochastic Defects and Image Imbalance in 6-Track Cells
by Fred Chen on 02-07-2024 at 6:00 am

Application Specific Lithography

The discussion of any particular lithographic application often refers to imaging a single pitch, e.g., 30 nm pitch for a 5nm-family track metal scenario. However, it is always necessary to confirm the selected patterning techniques on the actual use case. The 7nm, 5nm, or 3nm 6-track cell has four minimum pitch tracks, flanked… Read More


Non-EUV Exposures in EUV Lithography Systems Provide the Floor for Stochastic Defects in EUV Lithography

Non-EUV Exposures in EUV Lithography Systems Provide the Floor for Stochastic Defects in EUV Lithography
by Fred Chen on 01-18-2024 at 10:00 am

Defocus flare (small)

EUV lithography is a complicated process with many factors affecting the production of the final image. The EUV light itself doesn’t directly generate the images, but acts through secondary electrons which are released as a result of ionization by incoming EUV photons. Consequently, we need to be aware of the fluctuations… Read More