Array
(
    [content] => 
    [params] => Array
        (
            [0] => /forum/threads/fractilia-offers-solutions-package-for-addressing-euv-stochastic-issues.15754/
        )

    [addOns] => Array
        (
            [DL6/MLTP] => 13
            [Hampel/TimeZoneDebug] => 1000070
            [SV/ChangePostDate] => 2010200
            [SemiWiki/Newsletter] => 1000010
            [SemiWiki/WPMenu] => 1000010
            [SemiWiki/XPressExtend] => 1000010
            [ThemeHouse/XLink] => 1000970
            [ThemeHouse/XPress] => 1010570
            [XF] => 2021770
            [XFI] => 1050270
        )

    [wordpress] => /var/www/html
)

Fractilia offers solutions package for addressing EUV stochastic issues

Fred Chen

Moderator

The Stochastics Dilemma: Controlling What You Can't Measure
Stochastics are random and non-repeating patterning errors, and in EUV processes they can comprise over 50 percent of the total patterning error budget. Fabs need to measure stochastics in order to control them; however, existing methods are unable to measure stochastics with accuracy or precision. At the same time, advanced fabs cannot afford to ignore stochastics. While already a problem at leading-edge 193-nm optical lithography, especially with double and quadruple patterning, stochastics in EUV processes lead to significant yield losses and cost increases.

According to Chris Mack, CTO of Fractilia, "Stochastics have forced fabs to make a trade-off between yield and productivity. They either need to reduce the throughput of their EUV scanners by increasing exposure dose to avoid yield loss, or bring in an additional EUV scanner to make up for lost productivity. By controlling stochastics, fabs can improve the productivity of the process tools in the fab while increasing their yields. Our FAME product uniquely measures and controls stochastics in the fab with high accuracy and precision, enabling new options and solutions for our customers that otherwise would not be available to them. We're seeing exponential growth with the number of SEM images measured by customers using our products, making Fractilia the de facto industry standard for stochastics measurements."
 
The resist is known to make a difference. A higher resist absorption coefficient makes the bottom half of the resist layer perform worse stochasically than the top half. The issue is far worse for EUV than DUV due to the thinner resist thickness used by EUV:
Resist absorption summary.png

Also discussed in this article: https://www.linkedin.com/pulse/euv-resist-absorption-impact-stochastic-defects-frederick-chen
 
Back
Top