# Republication the 2D Era

**Economics in the 3D Era** Scotten W. Jones – President – IC Knowledge LLC

## Outline

- Discuss the three main industry segments that drive the state-of-the-art:
  - 3D NAND
  - Logic
  - DRAM
- For each segment present current status, roadmaps with technology, and resulting mask counts, transistor or bit density and transistor or bit cost trends.
- Conclusion



#### 3

## **3D NAND TCAT Process**

- 1. CMOS fabrication
- 2. Memory array formation single string or string stacking. String stacking repeats layer deposition, channel and stair step formation and adds an etch stop layer with channel feedthrough.
- 3. Interconnect



Charge trap cell (Samsung/Kioxia)

#### Memory array masks

- Channel mask
- Multiple stair step masks depending on the number of layers
- 1 or 2 slot masks
- Via mask
- Clear out masks









Mask and etch slot. Strip out SiN.

Deposit alternating layers of

Mask and etch channel hole.Deposit SiO-SiN-SiO

Stair step mask and etch. A series of partial etches and

photoresist trims are done.

SiO and SiN.

(ONO). • Fill with pSi/SiO.

- Deposit AIO, TiN, W.
- Etch back.
- Deposit SiO.
- Fill with W



Fill with W

Memory array string formation (Samsung/Kioxia)



## **Intel-Micron String Stacking**

- Due to the difficulty of etching oxidepolysilicon pairs Intel-Micron is the first company to string stack.
- String stacking splits up the memory array stack formation into strings.
- This simplifies the channel hole formation – the channel hole is the highest aspect ratio feature.







- Deposit alternating layers of SiO and pSi.
- Mask and etch channel hole.
- Recess etch poly, ONO dep, poly dep and etch back.
- Tunnel oxide dep and fill with pSi/SiO
- Deposit SiN, SiO and AIO etch stop layers.
- Mask and etch, fill with pSi.
- Deposit alternating layers of SiO and pSi.
- Mask and etch channel hole.
- Recess etch poly, ONO dep, poly dep and etch back.
- Tunnel oxide dep and fill with pSi/SiO

String stacking (Intel-Micron)



## Layers, Stacking and Bits/Cell

- The plot at the right illustrates the number of layers and strings to achieve those layers by year and company.
- The bits/cell is the maximum bits/cell for each year and company.
- SKH has discussed 500 layers in 2025 and 800 layers in 2030.

C KNOWLEDGE LLC



#### String Stacking and Bits/cell Versus Year and Company [1]

[1] Strategic Cost Model – 2020 – revision 00

## Mask Count Trend

- Mask count trend by year and company.
- We do not expect EUV to be adopted for 3D NAND.



C KNOWLEDGE LLC



NAND Mask Counts Versus 3D Layers and Company [1]

## NAND Bit Density

- The transition from 2D NAND to 3D is enabling the continuation in bit density scaling by using the third dimension.
- Bit density is the number of gigabits of memory on the die divided by the die size.
- Multiple points for the same company in the same year represent MLC/TLC/QLC/PLC/HLC.

[1] Strategic Cost Model – 2020 – revision 00



NAND Bit Density Versus Company and Year [1]

## NAND Bit Cost Trend

- Calculated cost per Gb.
- New greenfield fabs in all cases with 75k wpm capacity (current average size for 3D NAND fabs).
- Assumed countries are Singapore for Intel-Micron and Micron, China for Intel, South Korea for Samsung and SK Hynix and Japan for Kioxia.
- Bit density per slide 7.
- Bit cost without taking into account street width or test and packaging costs. Rough die yield approximations used.

[1] Strategic Cost Model – 2020 – revision 00





NAND bit cost trends [1]

## Logic Roadmap

#### Self consistent node name series

| 28 | 20   | 14   | 10   | 7    | 5    | 3.5  | 2.5  | 1.75 |
|----|------|------|------|------|------|------|------|------|
|    | 0.71 | 0.70 | 0.71 | 0.70 | 0.71 | 0.70 | 0.71 | 0.70 |

#### Company nodes and device types by year with transistor density

| Company | 2014    | 2015    | 2016    | 2017   | 2018   | 2019    | 2020      | 2021     | 2022     | 2023     | 2024   | 2025       |
|---------|---------|---------|---------|--------|--------|---------|-----------|----------|----------|----------|--------|------------|
|         |         |         |         |        |        |         |           |          |          | 5        |        |            |
|         | 14 (FF) |         |         |        |        | 10 (FF) |           | 7 (FF)   |          | (HNS/FS) |        | 3.5 (CFET) |
| Intel   | 54.22   |         |         |        |        | 106.10  |           | 208.05   |          | 405.17   |        | 501.26     |
|         |         |         |         |        |        |         |           |          | 2.5      |          | 1.75   |            |
|         | 14 (FF) |         | 10 (FF) |        | 7 (FF) | 5 (FF)  | 3.5 (HNS) |          | (HNS/FS) |          | (CFET) |            |
| Samsung | 34.68   |         | 54.55   |        | 100.59 | 133.56  | 202.85    |          | 345.95   |          | 428.00 |            |
|         |         |         |         |        |        |         |           |          |          | 2.5      |        | 1.75       |
|         |         | 16 (FF) | 10 (FF) | 7 (FF) |        | 5 (FF)  |           | 3.5 (FF) |          | (HNS/FS) |        | (CFET)     |
| TSMC    |         | 36.06   | 55.10   | 101.85 |        | 185.46  |           | 266.31   |          | 374.00   |        | 462.70     |

FF = FinFET, HNS = Horizontal Nanosheet, HNS/FS = Forksheet HNS, CFET = Complimentary FET with 2 decks



## Logic Mask Counts

- Leading edge logic mask count trends by node and company.
- Increasing metal layers and process complexity is driving up mask counts.
- Multi-patterning conversions to EUV reduces mask counts.
- CFET is highly selfaligned reducing the number of EUV layers.



## Logic Density Trend

- Transistor density for all processes other than VSRAM is based on the Intel density metric.
- VSRAM is based on projected 6T SRAM cell sizes and 6 transistors per cell.



[1] IC Knowledge – Strategic Cost Mode2020 – revision 00



Logic transistor density trends by company, technology and year [1]

## **Logic Transistor Cost**

- Calculated cost per one billion transistors.
- New greenfield fabs in all cases with 35k wpm capacity (current average size for logic fabs).
- No mask amortization (see the next slide).
- Assumed countries are Germany/US (14nm) for Global Foundries, US/Israel (10nm) for Intel, South Korea for Samsung and Taiwan for TSMC and GNRC.
- Based on transistor density without accounting for yield, street width or edge exclusion.
- Does not consider design costs that are limiting the number of designs that can be run on advanced processes.

[1] IC Knowledge – Strategic Cost Model –
 2020 – revision 00





## **Mask Set Amortization**

- Wafer cost with mask set amortization versus node and wafers run per mask set.
- Does not include design cost amortization.
- 40,000 wpm greenfield fab in Taiwan running TSMC processes.

| Node  | Wafer cost<br>ratio [1] | Mask set<br>cost [2] |  |  |  |
|-------|-------------------------|----------------------|--|--|--|
| 250nm | 1.42                    | \$43K                |  |  |  |
| 90nm  | 2.00                    | \$165K               |  |  |  |
| 28nm  | 5.04                    | \$1.2M               |  |  |  |
| 7nm   | 18.05                   | \$10.5M              |  |  |  |

[1] Wafer cost for 100 wafs/mask set divided wafer cost for 100,000 wafs/mask set.
[2] IC Knowledge – Strategic Cost Model – 2020 – revision 00



Logic wafer cost versus node and exposures per mask set [2]



### **DRAM Nodes**

|                   | 2016        | 2017  | 2018  | 2019  | 2020   | 2021  | 2022  | 2023  | 2024  | 2025  |
|-------------------|-------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| Micron Technology |             | 19-1x | 16-1y | 14-1z |        | 13-1a | 12-1b |       | 11-1c |       |
| Samsung           | 18.5-<br>1x |       | 16-1y | 14-1z |        | 13-1a |       | 12-1b |       | 11-1c |
| SK Hynix          |             |       | 17-1x | 16-1y | 15 -1z |       | 13-1a | 12-1b |       | 11-1c |

DRAM nodes are defined as the active half pitch.



## **DRAM Mask Counts**

- DRAM mask counts by node and company.
- There has been a large increase in mask counts beginning at 2Y.
- Mask counts have increased due to more multi-patterning and more core/peripheral transistor types/thresholds.
- First EUV use at 1z with increased use expected at 1a, 1b, 1c

[1] Strategic Cost Model – 2020 – revision 00



## **DRAM Bit Density**

- Bit density is die capacity in Gb divided by die size in mm<sup>2</sup>.
- The solid black line is the long term trend based on actual values.
- The dashed black line is the forecasted trend going forward.



[1] Strategic Cost Model – 2020 – revision 00

## **DRAM Bit Cost**

- Calculated cost per Gb.
- New greenfield fabs in all cases with 75k wpm capacity (current average size for DRAM fabs).
- Assumed countries are Japan Micron, and South Korea for Samsung and SK Hynix.
- Bit density per slide 16.
- Bit cost without taking into account street width or test and packaging costs.

[1] IC Knowledge – Strategic Cost Model – 2020 – revision 00



company and year [1]

## Conclusion

- 3D NAND
  - Scaling path to the mid to late 2020s
  - Bit cost may not scale beyond 400 layers
- Logic
  - Scaling path to the end of the 2020s with CFETs
  - Mask and design costs will limit the number of products that can take advantage of the latest technologies
- DRAM
  - Scaling and bit cost reductions have slowed
  - No clear answer to address scaling

