Leading Edge Logic Comparison

March 9, 2018

Scotten W. Jones – President – IC Knowledge LLC

sjones@icknowledge.com

Logic Standard Cell

- Logic designs are created using standard cells.
- The cell height is the number of tracks multiplied by the metal pitch.
- Tracks and pitch are measured in metal 2.
- A 7.5 track cell is shown, one half of the power and ground rail heights are in the cell above and cell below respectively.

7.5 track logic cell

Metal 2 Pitch

 The figure on the right presents the metal 2 pitch for the four companies driving the lading edge for logic:

M2 Pitch (nm)

- GLOBALFOUNDRIES
- Intel
- Samsung
- TSMC
- Solid filled markers are actual values, unfilled markers are IC Knowledge estimates.
- The trend is based on actuals only.

M2 Pitch Trend

Track Heights

- The figure on the right presents the track heights for the four companies driving the lading edge for logic.
- Solid filled markers are actual values, unfilled markers are IC Knowledge estimates.
- Reducing track height to drive shrinks is becoming more prevalent with recent and projected processes below the trend line.
- The trend is based on actuals only.

Cell Heights

- Combining the previous two slides we get the figure on the right presenting the cell heights for the four companies driving the leading edge for logic.
- Solid filled markers are actual values, unfilled markers are IC Knowledge estimates.
- The trend is based on actuals only.

Cell Heights

Cell Widths

- The cell width is related to the contact poly pitch (CPP).
- The number of CPPs that make up the cell width depend on the cell type and whether the cell has a double diffusion break (DDB) or single diffusion break (SDB).
- A DDB adds an addition one half CPP to each side of a cell so that in the case illustrated on the right the cells are 3x CPP for the DDB or 2x CPP for the SDB.

Double Diffusion Break

Single Diffusion Break

Double versus single diffusion break

C KNOWLEDGE LLC

SDB and DDB Usage

- For the four manufacturers:
 - GLOBALFOUNDRIES
 - Intel
 - Samsung
 - TSMC
- There are a variety of SDB and DDB usages depending on node and sometimes process variants within a node.

Contacted Poly Pitch

- The figure on the right presents the contacted poly pitch for the four companies driving the lading edge for logic.
- Solid filled markers are actual values, unfilled markers are IC Knowledge estimates.
- Note that CPP is limited to about 40nm due to device issues.
- The trend is based on actuals only.

Logic Cells – Two Input NAND Cell

- One of the most common logic cells is the two input NAND gate.
- The figure at the right illustrates DDB and SDB two input NAND cells.
- A DDB two input NAND cell is 4x CPP wide and a SDB - two input NAND cell is 3x CPP wide.

Double Diffusion Break

Single Diffusion Break

Double versus single diffusion break Two input NAND cells

More Logic Cells – Scanned Flip Flop

- Another common logic cell is the Scanned Flip Flop (SFF).
- The figure at the right illustrates DDB and SDB SFF.
- A DDB SFF cell is 20x CPP wide and a SDB - SFF cell is 19x CPP wide.

Double versus single diffusion break Scanned flip flop

2 Input NAND Cell Width

- Taking into account CPP and DDB versus SDB usage by company cell widths for two input NAND cells can be calculated.
- The plot on the right resents the cell widths for the four companies of interest by year.
- The trend is based on actuals only.

2 Input NAND Cell Width

Scanned Flip Flop Cell Width

- Taking into account CPP and DDB versus SDB usage by company cell widths for scanned flip flop cells can be calculated.
- The plot on the right resents the cell widths for the four companies of interest by year.
- The trend is based on actuals only.

Scanned Flip Flop Cell Width

Logic Process Density

- From the previous five slides it can be seen that the width of a logic cell depends on SDB versus DDB and what kind of cell it is.
- Intel has proposed revising an old metric of logic density based on a weighting of 60% two input NAND cells and 40% scanned flip flops. This meant to reflect the rough prevalence of the cell usage in logic designs.
- A cell sizes for two input NAND and scanned flip flops are the cell height and widths outlined previously.
- A two input NAND cell contains 4 transistors and a scanned flip flop cell contains 36 transistors.
- Based on the cells sizes and transistors per cell the cell type weighting can be used to produce transistor densities by process.

Transistor Density

- Using the proposed Intel transistor density metric, process density by year can be compared by year for the four companies of interest.
- The trend line is based on actuals only.

Millions of Transistors Per Square Millimeter

Standard Node Based on Transistor Density

- The plot on the right plots the stated node for technologies versus transistor density for the four leading edge logic companies.
- Only actual values are plotted.

Standard Node Versus Transistor Density

Standard Node Trend

Conclusion

- A detailed analysis of known and estimated nodes has been performed accounting for M2P, CPP, Tracks and DDB versus SDB.
- A standard node versus transistor density metric has been developed.
- The smallest standard node by year has been calculated and plotted for each of the four leading edge logic producers.
- Accounting for all factor intel has a slight standard node lead in 2017 but we expect TSMC to take the standard node lead in 2018.
- We expect TSMC and Samsung to maintain standard node leads over Intel from 2019 through 2022.

