

EDAgraffiti: The Book

Paul McLellan

2

EDAgraffiti: the book

Copyright © 2010 Paul McLellan

To purchase: www.lulu.com

 3

4

CHAPTER 1: MAJOR INDUSTRY TRENDS 8	
What did Moore really say? 9
Why EDA differs from ERP by more than one letter 11
Recutting the semiconductor pie 13
Tragedy of the commons and EDA 14
Lithography for dummies 15
Design For Manufacturing 17
For sale, fab, cost $40/second 20
Fab5 21
Arma virumque cano 23
Japan, lost in introspection 27
ARM, Atom, PowerPC 29
ESL and software signoff 32
The Economist on semiconductor 34
iSuppli report on process transitions 35
What will I want from my devices? 38
Changes in relative value 40
What should EDA do next? 42
GM and Cadence 44
Take the E out of EDA 45
EDA press 47
Mac and PC 49
PowerPC 51
Semiconductor cost models 53
Software signoff again 55
Is silicon valley dead? 57
Entrepreneurs ages 59
Designing a chip is like 61
EDA for the next 10 years 62
The VHDL and Verilog story 64
Shake that EDA malaise 65

CHAPTER 2: MANAGEMENT 68	
Three envelopes 68
Semiconductor is not EDA 70
Finance 73
Two million per salesperson 75
Twelve-o-clock high 79
Startups and big companies: your end of the boat is sinking 81
Ready for liftoff 82
Customer support 85
Test cases 87
Strategic errors 89

 5

Emotional engineers 91
CEO: a dangerous job 93
Channel choices 95
You comp plan is showing 97
Board games 99
Hiring and firing in startups 101
Application Engineers 104
The career path train doesn’t stop every day 106
How do you get a CEO job? 107
Managing your boss 109
Integration and differentiation 110
Big company guys don’t do small 112
Being CEO 114
Getting out of EDA 116
Hunters and farmers: EDA salesforces 117
Running a salesforce 119
How long should you stay in a job? 121
Spending money effectively 122
Interview questions 124
Acquistions: cull the managers 125

CHAPTER 3: MARKETING 128	
City Slickers Marketing 128
Intel only needs one copy 129
Super models 131
Why does EDA have a hardware business model? 134
The arrogance of ESL 136
Ferrari vs Formula 1 138
He who goes first loses 140
All purpose EDA keynote 142
No sex before marriage in EDA 144
Standards 146
Semi equipment and EDA 148
It’s like football only with bondage 151
Pricing. Vases and coffee pots 153
A real keynote: move up to software 155
Competing with free EDA software 157
It’s turtles all the way down 159
Don’t listen to your customers 161
The art of presentations 163
Swiffering new EDA tools 165
Presentations without bullets 167
Creating demand in EDA 169
Finger in the nose 170
Corporate CAD cycle 172
Licensed to bill 174
DAC 176

6

The Denali party 178
Value propositions 180
Being too early to market 181
Barriers to entry 183

CHAPTER 4: ENGINEERING 186	
Where is all open source software? 186
Open source again 188
Why is EDA so buggy? 189
Groundhog Day 191
Power is the new timing 193
Power again 195
Multicore 198
Internal development 201
Process variation: you can’t ignore statistics any more 204
CDMA tales 206
Another look at internal development 208

CHAPTER 5: FINANCE AND INVESTMENT 211	
Venture capital for EDA is dead 211
Venture capital for your grandmother 213
EDA: not boring enough 214
One hit wonders 216
Will you greenlight my chip 218
Crushing fixed costs 220
Technology of SOX 222
EDA and startups: $7M to takeoff 223
EDA startups: channel costs $6M 225
FPGA software 227
Wall Street Values 228
Royalties 230
SaaS for EDA 232
Why are VCs so greedy? 234
Term sheets 236
The antiportfolio 238
CEO pay 240

CHAPTER 6: BOOKS 243	
Innovator’s dilemma 243
The book that changed everything 245
Relevance lost 247
Crossing the chasm 248
Mr Rodgers goes to Washington 251
Early exits 252
Four steps to the epiphany 253

 7

Chips and Change 255
The Flaw of Averages 257

CHAPTER 7: OFF-TOPIC 260	
What color is a green card? 260
China and India 262
Visa. Priceless 264
Downturn 265
Old standards 267
San Francisco: silicon valley’s dormitory 269
Patent trolls 270
Patents 272
Where does everybody come from? 275
Public affluence private squalor 277

8

 Introduction
This book is an outgrowth from the blog EDAgraffiti on EDN
magazine online. Although the basis of the book is the original
blog entries, there is new material and the old material has been
updated and reorganized.

When moving the material from a blog into a book I had to
decide what to do about what were links to other parts of the web.
I decided that rather than putting in long URLs in footnotes,
which are unpleasant to type, I’d make sure that there was
enough information to find everything with a search engine. So,
for example, rather than giving an explicit URL for a book on
Amazon, if you have the title it should be straightforward to find.

I’d like to thank Ed Lee and Jim Hogan for encouraging me to do
the blog in the first place, and the editors of EDN magazine for
hosting it. Jim also created the map of semiconductor company
relationships that appears in this book. My son Sam designed the
EDAgraffiti logo and wall.

The blog is here.

Paul McLellan

San Francisco, March 2010

Email: paul@greenfolder.com

 9

Chapter 1: Major industry
trends

What did Moore really say?
Every EDA marketing presentation starts off by pointing out that
Moore’s law is making some problem worse. Of course, just the
problem that the EDA product pitched in the rest of the
presentation is designed to solve.

Everyone sorta knows Moore’s law but few people realize just
what it was he said over 40 years ago, and just how prescient he
was, or have even read his original paper.

In 1965, Gordon Moore was Head of R&D at Fairchild. This was
several years before
Moore left Fairchild
to found Intel.
Moore noticed that
the number of
transistors on the
integrated circuits
that Fairchild was
building seemed to
double every two
years, as shown in
the graph here from
Moore’s original
article. As he
pointed out there,
"Integrated circuits
will lead to such

wonders as home computers, automatic controls for automobiles,
and personal portable communications equipment." Remember
that this was 1965, when an integrated circuit contained 64
transistors: this was an extraordinary prediction.

10

Surprisingly, over 40 years on, semiconductors seem still to be
increasing in complexity at this rate. Gordon Moore’s original
remark is, of course, now known as “Moore’s Law” and is
expected to continue for some time.

Exponential growth like this over a sustained period of time,
rather like compound interest, has a dramatic effect. In the
seventies a chip may have contained a few hundred transistors.
Today a chip can contain billions of transistors and in the future
the predictions are for chips with several hundred billion
transistors. This is how all the electronics for a high-end
mainframe computer can be compressed into a single chip. Only
we attach a radio to it and call it a cell-phone. Or we put a lens on
it and call it a digital camera. Or we attach a dish to it and call it
satellite TV. Or we take it on a plane and use it to write about
Moore’s Law.

But it is possible to look at Moore’s Law the other way round:
the cost of any given functionality implemented in electronics
halves every two years or so. Over a period of twenty years this is
a thousand-fold reduction. A video-game console, which is so
cheap that children can buy them from their allowances, has far
more computing power and much better graphics than the
highest-end flight simulators of the 1970s, which cost millions of
dollars. An ink-jet printer has far more computing power than
NASA had at its disposal for the moon-shots (supposedly a total
of 1 MIPS1 on all the computers they had put together). It is this
exponential driving down of electronic costs that had transformed
so many aspects of our lives in the last twenty years or so since
integrated circuits became cheap enough to go into consumer
products.

Here is Gordon Moore again, this time from a 1995 Fortune
article: “The whole point of integrated circuits is to absorb the
functions of what previously were discrete electronic
components, to incorporate them in a single new chip, and then to
give them back for free, or at least for a lot less money than what
they cost as individual parts. Thus, semiconductor technology
eats everything, and people who oppose it get trampled.”

Moore’s Law started as an observation, became a prediction, and
eventually transformed into a blueprint for the semiconductor

 11

industry. The International Technology Roadmap for
Semiconductors is largely an analysis of what it will take to make
Moore’s Law continue to be true. Moore’s Law has thus become
a self-fulfilling prophecy for the time being.

Of course the really interesting question is for how much longer?
1 Have you noticed that people like to write or say 1 MIP as if
MIPS was plural. But, of course, the S stands for “seconds”. End
of today’s nitpicking.

Why EDA differs from ERP by more
than one letter
What is it about EDA that makes it different from other software
businesses? When the CFO of Texas Instruments buys Oracle or
SAP, he or she doesn’t study what algorithms they use in their
relational database. EDA purchasers are the only people who
“take the cylinder head off and look at the valves” before buying.

I think it is the speed of change. EDA, as we are all tired of
hearing, is driven by Moore’s law. But the effect is that every few
years a complete technology re-investment needs to be made and
the incumbent does not have much of an advantage in
discontinuous change. It’s not like that in other software
industries. For Oracle, the last major change in databases was the
relational database superseding hierarchical databases, and that
was starting in the 1970s (first at IBM and then when Larry
Ellison founded Oracle under its original name, Software
Development Laboratories). It looks like there may be another
change starting, driven by the internet, to schema-free databases
which scale better to thousands of servers. So one turn of the
handle of Moore’s law in 30 years, 15 to 20 times slower.

You could give me half a billion in VC money and I’m not going
to be able to put together a startup to displace Oracle, no matter
how many of the best database programmers I hire. Because it is
not mainly about technology. And even if, by some miracle, I
succeeded it would take 20 years. By contrast, when EDA
companies miss a transition they tend to vanish quickly. Calma

12

was not a major force in gate-level design. Daisy missed
synthesis despite Synopsys being staffed with many of the same
people, and, to add insult to injury, in the same buildings.
Cadence lost its Dracula physical verification franchise to
Mentor’s Calibre as quickly as it took 0.35um to come online, a
few years. Yes, mistakes were made. Daisy made an ill executed
acquisition of Cadentix. Cadence decided to make its own
hierarchical DRC, Vampire, incompatible with Dracula so it
didn’t harm its cash-cow. But mistakes will always be made
(“new” Coke, Ford Edsel..) but in other industries one mistake is
rarely fatal.

The speed of change also means that startups can get traction in a
way that they don’t in other industries. The barriers to entry are
really low, just a few people who really know the technology and
it is possible to build a world-class product that is better than
anything else out there. Most importantly, customers will buy it
since the risk of using a product from a startup was lower than
the risk of not doing so. Other businesses don’t move so fast.
Waiting for the big guys to have it is usually the safest approach.

This may be changing as the importance of integration increases
and so the important of point technology diminishes. I spent
years at Compass Design Automation with a fully-integrated
toolset that was very productive. But customers would only buy
“best-in-class point tools” and do all the integration themselves.
We were selling an engine when people wanted to buy their own
ignition system, their own fuel-injectors and make the wiring
harness themselves. Despite the limited commercial success
(Compass only reached $55M before it was acquired) I still
believe that the integrated approach really was superior for
everything except unusual chips like memories and
microprocessors. The evidence was that every chip VLSI
Technology produced until the late 1990s was produced entirely
on Compass tools on very short time-frames. In that era, for
example, a huge percentage of mobile phone chips, then and now
a market with short product cycles, were done that way.

It is no longer clear that most semiconductor companies have the
inclination or manpower to look at tools from startups. Their
focus is more on reducing cost and reducing the number of

 13

vendors they use. It is completely unclear how EDA will evolve
in the current downturn. In Mike Santorini’s memorable image,
semiconductor is the speedboat that pulls the EDA water-skier.
When it is at full speed we ski well. Right now I think the water
is around our waist and we are still sinking.

Recutting the semiconductor pie
The large semiconductor companies have historically owned their
own fabs for at least a large portion of their manufacturing
capacity. They then needed to have enough product lines to fill
the fabs, which in turn meant a certain scale. They were called
IDMs, integrated device manufacturers, to distinguish them from
fabless semiconductor companies who did design, marketing,
sales but left the manufacturing to TSMC and UMC in Taiwan.
Even if they were wanted to own their own fabs for some reason,
they didn’t have enough products to keep them full. However, as
fabs have got more expensive and the technology development
necessary to have a state-of-the-art process has risen, the size
necessary to justify owning a fab has increased beyond the
volume of almost any semiconductor company outside of
memory and Intel. So companies like AMD and Texas
Instruments are going completely fabless.

Once semiconductor companies are fabless, the motivation for
having the existing set of divisions in the same company doesn’t
necessarily make that much sense. NXP (née Philips
Semiconductors) has sold its wireless division to ST. That
transaction was probably driven by the need to raise some cash
by NXP’s private equity owners, but I think it is typical of the
sort of transaction we are likely to see. Freescale (née Motorola
semiconductor division) has its wireless division up for sale too.

It is interesting (well, to some people like me) as to why
companies exist at all. Why don’t we all just be independent
contractors and take orders for our services. The first person to
think much about this was Ronald Coase who realized that the
transaction costs involved in us all operating that way would
swamp us, and so it is much more efficient to organize into
companies with a more directive style. His work is known as

14

(surprise) the Coase Theorem and dates from 1937. For a
semiconductor company with a fab, it was more efficient to
organize into a company built around manufacturing and have
enough design and selling capacity to feed that beast.

I expect that many more changes in how the semiconductor
industry is carved up into different companies will come about in
the next year or two. Not just mergers, although there will
probably be some of those, but divisions being sold so that when
the dust settles there will be just a handful of serious competitors
in any market space. For example, it looks like wireless is going
to come down to TI, ST, Qualcomm and Samsung.

Tragedy of the commons and EDA
The tragedy of the commons is an article published in Science
magazine in 1968 by Garrett Hardin. It has since become very
well known and is applicable widely when resources are shared
without a market. The canonical example is common land being
over-grazed or a common ocean being over-fished. It is in every
fisherman’s interest to fish as much as he can even though he
knows that the area is being over-fished. If fishes a bit more than
his quota (assuming there is one) he gets to keep all the value of
the extra fish but the cost of the over-fishing is spread among all
the other fisherman.

So what does this have to do with EDA?

Each semiconductor company knows that they need EDA
investment in R&D to be healthy. However, when they negotiate
with the EDA vendors, of course they want to get the lowest
price possible. They get all the money they save, but the impact
of the reduced revenue is spread among them and all their
competitors, perhaps a 5% problem for them.

But just like over-fishing the oceans, each vendor pursuing this
strategy means that EDA risks being starved for investment. Each
semiconductor company’s dream is that they get their EDA
software for almost nothing, but that all the other semiconductor
companies over-pay so EDA has plenty to invest. But that is not

 15

the situation we are in today, even before the recent economic
chaos.

A friend was arguing with me the other day that EDA is dead,
using the Monty Python dead parrot sketch (“This parrot is no
more! He has ceased to be!”) to emphasize the point. If EDA
was, say, the newspaper industry then this would be unarguable.
The only debate is when, and how, and what comes next. But
EDA is not a buggy-whip business, it cannot go away. It can only
change its form. As a venture investment, I agree it is dead. As a
business, probably not. And as a technology, certainly not.

Since almost all electronics depends on semiconductors and since
semiconductors can only be designed with EDA tools, this is a
potential problem brewing. Electronics is about 3 trillion dollars,
semiconductor is about 400 billion dollars, and EDA is just 5
billion. It is tempting to think of EDA as a hair attempting to wag
the tail and have the tail wag the dog. But EDA is more like the
pituitary gland, a tiny bit of the animal but without which nothing
else works.

Lithography for dummies
You probably already know that designs are transferred onto
chips using a photographic process. The wafer is coated in a
solution called photoresist and then exposed to light passed
through a “mask” which alters its chemical composition. The
exposed (or sometimes unexposed, depending on type)
photoresist is then removed with a powerful acid and some
semiconductor process takes place through the gaps created:
diffusion of impurities, implantation of ions, etching of metal and
so forth.

Originally a mask was the size of an entire wafer and all the die
(technically the plural of die is dice but it looks so Las Vegas I’ll
stick with die) were exposed to light at the same time through a
mask the same size as the wafer (which was 1”, 2”, 3” or 4” back
then; now they are 12” with 18” in planning). For about the last
twenty years, though, each die has been exposed individually
through a reticle, a smaller mask that is stepped across the chip
one die at a time by an expensive piece of equipment called a

16

stepper. The reticle is a multiple of the actual die size and the
stepper has reduction optics rather like a photographic enlarger in
reverse.

Originally we used 436nm mercury lamps which was a much
shorter wavelength than the 1um or so feature size we were
trying to achieve on the die so we didn’t have to worry about all
those strange things in optics that you may remember from high-
school or college physics: Young’s slits, diffraction gratings,
wave interference. What was drawn on the layout designer’s
screen, what was put on the mask and what ended up on the
silicon were pretty much the same thing.

As feature sizes got smaller, we reduced the wavelength of light,
first to 248nm and then to 193nm. We are still at 193nm for two
reasons. We had developed technology for DUV (deep-ultra-
violet) at 157nm but it was really expensive and unattractive. We
also discovered immersion lithography where the gap between
the lens and the wafer is filled with water not air, which improves
things enough that we can continue to use 193nm for the time
being.

The basic problem is that as the wavelength gets shorter and
shorter, we are moving out of the part of the electromagnetic
spectrum where we can focus light with lenses, and into the part
where we essentially have X-rays that go straight through the lens
and through pretty much anything else too. The next step looks
like it will have to be e-beam lithography, where a beam of
electrons is steered in the same way as in an old TV. This is well-
understood technically but it has a very slow write speed which,
so far, makes the whole process uneconomical for mass
production.

But being stuck at 193nm means we have a new problem. We
have feature sizes on chips that are much less than 193nm (which
is around 0.18um which was many process nodes ago). All sorts
of optical effects happen due to wave interference of light and we
needed to put very different patterns on the mask from the
original layout, in order to get the eventual feature on the die to
match what we first thought of. It became anything but
WYSIWYG.

 17

There is a whole gamut of techniques that have come to be
known as RET, for resolution enhancement technologies. Optical
proximity correction (OPC) changes the shape of what is on the
mask so that what ends up on the wafer is what is required. For
example, corners have extra lumps added so that they don’t get
etched away. Phase shift masking (PSM) etches the reticle by
fractions of a wavelength so that the interference that results is
desirable. The generic name for putting these extra features onto
the mask is known as RET decoration. Since this might multiply
the billion or so shapes on a layer by a factor of ten it is
computationally
very expensive.

A whole
subsegment of
EDA grew up
when this first
became important,
under the generic
name of DFM,
design for
manufacturability. Many companies were started in the segment
and it is instructive to look at this since it is the most recent
example of an area of technology where the basic cycle from
foundation to exit is pretty much complete.

Design For Manufacturing
The need to continue using 193nm light at the 90nm technology
node created a discontinuity. Ad hoc approaches would not
longer be enough. Venture capitalists realized this was an
opportunity, and also a number of manufacturing companies that
had some relevant software internally. They created about thirty
EDA companies in the early 2000s. There were also some
existing companies that moved to bring products to market in the
space.

In a cohort of companies founded to address a problem, there is a
winner-take-all dynamic. This is true of most industries, not just
EDA. Most of the profit goes to the #1 player, some goes to the

18

#2 player and #3 on down pretty much either break even or lose
money. For startups, the #1 player is acquired for a lot of money,
#2 for a reasonable sum, and everyone else become what VCs
optimistically call a technology sale, meaning they'll take
whatever they can get to get it off their hands, like selling a car
for spare parts.

The earliest company into the space was OPC solutions, which
was probably too early. Mentor acquired it in 1998 and used as a
starting point for its DFM solutions in Calibre, which is still the
market leader in OPC. Then Numerical Technologies, which
Synopsys acquired in 2003.

If we look at the next generation, the companies fall into three
main groups.

Firstly, mask analysis: examining the polygons on the mask and
checking whether they were matched what was meant to be there.
This was mainly the province of the equipment vendors (plus
Brion): KLA, AMAT, Brion, ASML and Nikon.

Next were the simulation companies. They would analyze the
mask, work out the effect of all the wave interference of light in
the stepper optics, simulate the lithography and work out what
would end up on the wafer. This could then be used to check that
it was close enough to the original layout, or to adjust timing or
to search for hot spots, areas of the wafer where manufacturing
problems (such as bridging of one piece of metal to another) were
too statistically likely. Brion, Clearshape, ASML and Mentor all
had products here.

Finally, optimization, working out the impact of the RET
decoration and making changes to it to improve manufacturing
yield. ClearShape and Blaze played here.

But there were dozens of other companies. Process optimization
with HPL Technology, IC Scope, ISE, PAL, PDF solutions,
Sigma-C, Silvaco, Stone Pillar, Syntricity. Preventing
catastrophic failures and increasing yields were Anchor, CMP,
Bindkey, ESCad, Prediction software, ChipMD, Invarium, ,
Ubitech and Xyalis. Hot spot tools and critical area identification
came from Ponte, Mentor, Cadence, Synopsys. Mask
optimization produced another group consisting of Aprio, ASML

 19

masktools, Blaze, Brion, K2, Clearshape, Fortis, IC Scope,
Magma/Mojave, Takumi and, of course, Mentor's Calibre. Phew,
that’s a lot of companies and I’m sure I’ve probably missed some
too.

You will notice that most of these companies are no longer
around. Actually they are around, just not independent. The big
successes among the startups were Brion, which was acquired by
ASML (a lithographic equipment company) for about $270M and
Clearshape (acquired by Cadence for around $50M). K2 was also
acquired by Cadence for an undisclosed, supposedly not large,
sum.

Mentor's Calibre is probably still the market leader in OPC. Next
are Synopsys's DFM tools which originally came from TMA (via
Avant!) and Numerical Technologies. Cadence, despite a few
acquisitions, are an also-ran. PDF solutions still exists (it is a
public company). Blaze (which had already absorbed Aprio)
existed as late as last November and its assets will show up
somewhere soon. Takumi still exists, mostly doing business in
Japan. Anchor still exists, with Xillinx among others as a
customer. The rest are mostly gone or, in some cases, reabsorbed
back into the parent that they were optimistically spun out of.

So what is the moral of the story. As usual, one conclusion is the
venture capitalists make sheep look like independent thinkers.
Every VC that invested in EDA wanted to have a play in the
DFM space.

Another observation is that the technology was tricky: optics is
not a normal part of EDA. The business models were trickier: did
you sell to design groups, the manufacturing groups in fabless
companies, the foundries themselves or the mask houses? How
statistical (manufacturing) versus pass/fail (design) did you make
things? Did you get a royalty of some sort or just license fees?

20

For sale, fab, cost $40/second
Semiconductor technology is a mass-production technology.
Enormous functionality can be delivered in a chip that costs a
few dollars. But only if you want to buy a lot of them. Further, to
keep Moore’s Law on track, the scale of manufacture keeps
increasing. Chips were originally manufactured on circular
wafers that were 1” or 2” in diameter, cramming as many of die
onto the wafer as possible, and perhaps building a few wafers per
day. Then wafers became 4”, 6”, 8”. Today the latest fabs use 12”
wafers and may manufacture 50,000 wafers a weekor more. At
the same time, as the wafers have got larger the size of the
elements on the chip have got smaller and smaller, going from
over 10 microns to 30-90 nm today.

All the fab equipment is extremely expensive and the cost of a
fab has gone from a few tens of millions of dollars to around $5-
6B today. Since a fab has a useful lifetime of about three years, it
depreciates at around $40/second. Taking into account all the
other costs (silicon, design, marketing) means that to own a
modern fab means a company must do business at $200/second
or $6B/year. Few companies are this big and so not many
companies, even those that call themselves semiconductor
companies, can afford to own their own fabs any more. Jerry
Sanders’s comment that “real men have fabs” is no longer true at
all. Only Intel seems big enough to go it alone on the
manufacturing side, along with TSMC for foundry and Samsung
for DRAM.

None of this is particularly positive for EDA, or the non-IP bulk
of EDA. Fewer chips produced in higher and higher volumes is
the EDA nightmare. The EDA dream is hundreds of companies
designing chips, many of which don’t even go into production,
not far off the situation in the late 1980s and early 1990s when
ASIC democratized design and pushed it out into the system
companies. Not coincidentally this was also the heyday of EDA
from a growth and business point of view.

 21

Fab5
For some time I have been talking about the semiconductor
industry as the Fab 5, since there have been five process “clubs”.
A few players hedge their bets and are in more than one club. The
fab five are Intel (a club on its own), UMC (along with Xilinx
and Texas Instruments), IBM (along with Samsung, ST, Infineon,
AMD, Sony, Freescale and Chartered), Japan Inc (Renasas,
Toshiba, Fujitsu, OKI, Sharp, Sanyo, Matsushita) and the big one
TSMC (with AMD, TI, NXP, ST, LSI, Sony, Qualcomm). Japan
Inc in particular is messy with Toshiba tied closely to NEC (in
the TSMC club but now merging into Renasas) but also to Sony
(in the IBM club too), Renasas and Fujitsu are still sort of going
it alone. Japanese politics would indicate that they will all get
together somehow.

Big changes are afoot. Here are some of the things going on, ST,
NXP and Ericsson wireless are all merged together into a new
company (called, yawn, ST-Ericsson). Nokia has also sold its
wireless unit to ST so it is presumably in there somewhere.
Toshiba looks like it is going to really join Japan Inc (as if there
was any doubt). TI and Freescale are both trying to find a home
for their wireless groups but nobody wants them at a price they
want to sell. The IBM club have deepened their technology
agreements and ARM (although fabless) seems to be sort of
joining the IBM club to help create energy-efficient SoCs, with
Samsung both building and consuming the volume (and so I
hereby rename the IBM club the Samsung club).

What about everyone else? AMD, ATI (also in AMD for now),
MIPS, nVidia, UMC, NXP, Infineon, Motorola, Texas
Instruments, Freescale were all bleeding cash even before the
downturn got really bad, and they are reducing their footprints.
All of Japan Inc except maybe Toshiba were also bleeding money
(and Toshiba would have been except for all that flash going into
phones and iPods, and is now hurting more after losing Xilinx to
Samsung over price).

So based simply on financial strength it looks like the 3 fabs are
going to be TSMC, Intel and Samsung (taking over the name
badge for the IBM club) long-term. Of course other people like

22

ST won’t lose their fabs overnight but they won’t be able to
afford to keep up. And it is unclear how many of the memory
houses will make it through the current downturn. Qimonda is
clearly comatose already and isn’t going to wake up.

So the Fab 5 will become the Fab 3. For EDA this just
emphasizes that there are too many EDA companies, as I’ve said
before. Or maybe that EDA will go internal again, which is a
discussion for another day.

Who would have predicted 20 years ago when TSMC was a
small foundry with a non-competitive Philips process that it
would be the dominant player. Kind of like predicting that Ringo
would be the last Beatle of the Fab 4…oh wait, maybe that’s
going to happen too.

 23

24

Arma virumque cano
Of arms and the man I sing. ARM is the leading microprocessor
vendor in the world, at least if you count the right way. Over 10
billion processors have been shipped and the 1.5 billion mobile
phones per year must contain at least another 1 or 2 billion. That's
about 5 million per day or 100 per second. That's a lot of compute
power.

I have a long history with ARM, although I never worked for
them. Acorn (the A in ARM originally stood for Acorn, a British
personal computer manufacturer) decided in about 1983 to design
their own RISC processor for their next generation product
instead of continuing to use the 6502. They also decided to use
VLSI Technology to manufacture it.

Back then there was no real EDA industry, design tools were
captive inside semiconductor vendors. If you wanted to do a
design with VLSI Technology then you did it with VLSI Tools.
This was also way before VLSI had offices in the UK or even
Europe. So the tools needed to be installed, but we had no local
application engineers, so I was the guy that got sent, presumably
because I was British, even though I was a programmer not an
AE. Anyway, as a result, I installed the design tools on which the
first ARM was designed. The lead designer who would use them
was Jamie Urquhart who eventually went on to be CEO of ARM
for a time.

Acorn fell on hard times as the PC market consolidated and it
was acquired by Olivetti (yes, the typewriter people from Italy
although by then they were in electronics too).

In 1989, Apple decided to build the Newton. The back-story is
actually much more complicated than this. Larry Tesler of Apple
looked around the various processors that they might use and
decided that the ARM had the best MIPS per watt, which was
really important since battery life was critical (the Newton
wouldn't be any use at all if its battery only lasted an hour) but
the computation needs to do handwriting recognition and other
things were significant. But they also decided they couldn't use it

 25

if the design team and compiler teams were all buried inside a
minor division of Olivetti.

So ARM was spun out as a joint venture between Acorn/Olivetti,
Apple and VLSI Technology. I had to fly from France, where I
was by then living, to a mysterious meeting in Cambridge. I
wasn't even allowed to know what it was about until I got there.
VLSI provided all the design tools that the nascent company
needed in return for some equity, 5 or 10% I think, and also built
the silicon. Remember, at this stage the idea was not to license
the ARM widely, but rather to sit on the rocket-ship of the
Newton as Apple created an explosively growing PDA industry.
John Sculley, Apple's CEO, was publicly saying the market for
PDAs and content would reach $3 trillion. VLSI would sell ARM
chips (this was just before a processor was small enough to be
embedded) to other companies for other products and we would
pay ARM a royalty plus pay them engineering fees to design the
next generation. Or something like that, I forget the details.

Well, we all know how the Newton story played out.

Back then, microprocessors were not licensed except in
extremely controlled ways. They would be second-sourced since
large customers didn't want to depend on a single semiconductor
supplier in case their fab burned down or some other disaster
interrupted supply. For instance, AMD originally entered the x86
business as a second source to Intel. VLSI was a second source to
the Hitachi H8. The second source could also do its own business
with the processor but it was never expected to be significant
(hence all the lawsuits between Intel and AMD when AMD
turned out to want to compete seriously against them).

Once it was clear the Newton was not going to be a success,
VLSI continued trying to sell ARM and ARM-based designs to
other customers. But nobody had heard of ARM and they were
very reluctant to use what was then a largely untried
microprocessor. There was too much technical risk.

Meanwhile, ARM had to work out how to make some money
other than selling through VLSI. I have no idea if it was
deliberate but just like IBM thought nothing of letting Microsoft
license DOS to others (who would license it?) ARM had

26

complete freedom to do this. Under Robin Saxby (now brave,
brave Sir Robin) they licensed a dozen semiconductor vendors.
Suddenly for VLSI Technology, nobody worried about technical
risk any more, they had heard of ARM and wanted it. But VLSI
also had a dozen competitors with almost the same product.

Also, around this time, cell-phones were transitioning from using
8-bit microprocessors for their control processors to delivering
more compute power. They largely skipped 16 bit and so the
ARM7 (or more accurately the ARM7TDMI) was designed into a
good percentage of cell-phones. And luckily cell-phones did
promptly take off like the Newton rocket was supposed to have
done.

VLSI's cell-phone business exploded too, with Ericsson
representing almost 40% of VLSI's total business at one point,
almost all of it whatever was the current version GSM baseband
chipset. Ironically, Ericsson, at that time, didn't use ARM, they
used their own implementation of the Z80.

When Compass was spun out from VLSI Technology, we
inherited the ARM deal, namely providing everything ARM
needed for free. Of course VLSI didn't see fit to give us the ARM
equity that was the payment for this, or Compass would have
ended up being wildly profitable. It fell to me to renegotiate the
terms with Tudor Brown (now President of ARM). It was
difficult for both sides to arrive at some sort of agreement. ARM,
not unreasonably, expected the price to continue to be $0 (which
was what they had in their budget) and Compass wanted the deal
to be on arms-length(!) commercial terms. It was an over-
constrained problem and Compass never got anything like the
money it should have done from such an important customer.

I eventually left Compass (I would return later as CEO) and
ended up back in VLSI where one of my responsibilities was re-
negotiating the VLSI contract with ARM for future
microprocessors. It is surprising to realize that even by 1996
ARM was still not fully-accepted; I remember we had to pay
money, along with other semiconductor licensees, to create an
operating system club so that ARM in turn could use the funds
pay Wind River, Green Hills and others to port their real-time

 27

operating systems to the ARM processor. Today they could
probably charge for the privilege.

The business dynamics of ARM have certainly come a long way.

Japan, lost in introspection
There has been a lot of speculation about what will happen to the
Japanese electronics companies, and in particular their
semiconductor divisions, all of which are bleeding money.

If you visit Japan you get some idea of the problem. Everything
is too inward looking. All the mobile phones are great and seem
in some ways to be ahead of what we have in the US, and they
are all made by Japanese manufacturers. But that is the problem,
they are made by manufacturers who have given up in the rest of
the world.

Greg Hinckley, the COO of Mentor Graphics, once told me about
interviewing a candidate for a finance position who came from
American Airlines. Their focus, the candidate said, was to touch
down 30 seconds ahead of United. It was as if Southwest and Jet
Blue and all the rest didn’t even exist. Being the best airline just
meant being the best legacy airline: beat United, Delta and the
others.

The Japanese cell-phone companies are like that. They are so
competitive for their share of the Japanese market that they have
given up on the global market and what it takes to compete there.
Of course, the Japanese cell-phone transmission standards are
different which means that you have to decide whether to
compete in Japan, overseas or both. Those different standards
may have looked like a giving a good unfair advantage to the
Japanese since Nokia, Ericsson or Samsung were unlikely to
focus on the Japanese standard first even during the initial high-
growth period. Even today, Nokia, the world’s biggest cell-phone
manufacturer has less than 1% market share in Japan. But on the
other hand the Japanese manufacturers have no market share in
the rest of the world, which is orders of magnitude bigger. Sony
is an exception (Sony is almost always an exception) but perhaps

28

only because it has a joint venture with Ericsson rather than
going it alone.

Motorola had the same problem in the digital transition away
from analog phones, where it was the biggest manufacturer in the
world. The rest of the world went digital with GSM (which back
then stood for Groupe Spécial Mobile before it got renamed as
Global System for Mobile communications). The US initially
decided to simply make the voice channels of their analog system
AMPS into digital channels to form D-AMPS, which was what
AT&T wanted. So Motorola had to focus on making handsets
and base stations for that American-only standard (I think it was
used in Israel too) and largely missed the transition in the rest of
the world by focusing inward. Much later, AT&T gave up on IS-
136 that D-AMPS had morphed into and switched to GSM
(although the current AT&T uses GSM mainly because SBC and
PacBell Wireles went with GSM from the start and ended up
acquiring the old AT&T). When you look where it came from, it
is amazing that Motorola’s wireless division looks unlikely to
survive.

I was in Japan most recently a year ago when I was CEO of
Envis. On a completely off-topic note I finally did something I’ve
wanted to do for a long time: I got up at 5 in the morning and
visited the Tsukiji fish-market. I recommend making the effort,
and with jet-lag you’ll probably be awake at 5 in the morning in
any case. Nothing like unagi (eel) and green-tea for an early
breakfast.

Visiting Japan really is captured well in the movie “Lost in
Translation.” Being awake in the middle of the night with jetlag,
the weird stuff on TV, the atmosphere of the bars in the
international hotels, Shinjuku in the rush-hour. Unfortunately
I’ve never had the Scarlett Johansen lying on my bed bit.

Visiting the usual semiconductor companies I got the feeling that
they were all only competing with each other. By and large they
were making chips to go into consumer electronics products for
the Japanese market. There were obviously far more products and
far more chips being done than could possibly make money, just
like all those cell-phones and cell-phone chips couldn’t be

 29

making money (not to mention that the Japanese market is
already saturated).

With too many companies, and too many uncompetitive
semiconductor divisions, consolidation is to be expected. But
Japanese politics is inward facing too and so they can only merge
with each other and gradually move towards what I call Japan Inc
in the semiconductor world (to be fair, this same issue is one that
affects my American Airlines example; British Airways or
Lufthansa is simply not allowed to buy a major stake, recapitalize
them and clean them up because congress has laws preventing it).
So it looks like gradually the semiconductor companies will
consolidate into a memory company (Elpida) and a logic
company and, based on past history, they won’t take the hard
decisions necessary to be competitive globally rather than just in
Japan.

ARM, Atom, PowerPC
Xxx

What is a MID? It’s a Mobile Internet Device also known as a
netbook. A huge battle is brewing as to whether a MID is more
like a smartphone or more like a PC. It has major implications in
the microprocessor market, the operating system market, for the
smartphone manufacturers, for Apple and probably even the
wireless network providers. Let’s look at the processors.

In the blue corner is Intel, obviously with a stronghold in the
desktop and notebook PC market. They have AMD to contend
with there but I’m afraid I don’t see how AMD can survive and I
predict they will fall by the wayside. But that type of chip is too
big and power-hungry, not to mention expensive, for other
markets and so they have come out with Atom, which is a low-

end embeddable x86
processor. However, it is
still burdened with the
x86 instruction set,
which means that it
requires a large and

30

power-consuming instruction decode unit.

In the other blue corner is ARM, with a stronghold in the cell-
phone market including the smart-phone market. All those 25,000
applications in the iPhone store run on ARM. Blackberries are
ARM-based to, although just to add a wrinkle, manufactured by
Intel (Intel acquired an ARM license when they acquired the
semiconductor business of the old Digital Equipment
Corporation, and renamed StrongARM to Xscale).

The battleground for the upcoming fight is the MID . These are
notebook PCs with smaller screens and a much lower price point
than a PC, but with larger screens than a smartphone. Intel with
Atom is betting, along with Microsoft so far, that this market will
demand windows binary compatibility and thus will require a
Microsoft operating system and an x86 processor. ARM are
betting that this is not true, that MIDs will hide the operating
system, run new applications and so nobody will care what the
underlying operating system will be. Which means that it will be
some form of Linux such or perhaps Google’s Android (or if
Apple enters this market as expected, OS-X which also Unix
under the hood). Lurking around, of course, are the other
smartphone operating systems, Symbian and Windows Mobile
although they seem unlikely candidates for major success in the
MID space (but primarily running on ARM in any case).

The really interesting wrinkle is whether Microsoft supports
ARM with Windows 7 for this space. That would not give
complete Windows binary compatibility but if Office was
available (not just the operating system) that could be a very
compelling compromise. Intel would be the big loser of this since
Atom has poor power consumption and higher cost and really its
only attraction is backwards compatibility with full-size PCs.

The big downside to Microsoft of supporting ARM, apart from
the engineering cost, is the fallout it would likely provoke with
Intel. But Microsoft has done this before when, while publicly
committed to Itanium, they ported Windows to 64-bit x86 with
AMD. By the way, this was done using Virtutech virtualization
technology (before I worked there) with the result that
Windows64 booted successfully the first day silicon was
available, an extraordinary achievement.

 31

One other wrinkle is the manufacturing. ARM is, of course,
available from a huge range of suppliers. Intel will build Atom-
based parts but is not in the ASIC business. TSMC will build
Atom-based parts based on their recent announcement. However,
the TSMC press release talks of expanding the “Intel Atom’s
availability for Intel customers” which may just be marketing
getting the word Intel in as many times as possible, or really may
mean some serious restrictions on availability. Furthermore, the
Atom is not a soft core and so can’t be prototyped in FPGAs.
Whether this is a critical success factor remains to be seen. Based
on my previous experience dealing with Intel, they won’t make
any netlist available. Sometimes being paranoid to survive has its
downside.

Lurking quietly in the 3rd corner of the microprocessor ring is
PowerPC. This is heavily used in Avionics, automotive and
networking (routers and cellular base-stations). It used to be the
processor in the Mac, but Apple switched to Intel reportedly
because they couldn’t persuade IBM to produce a low power
PowerPC to keep Macbooks competitive. Both IBM and
especially Freescale manufacture chips using it but somehow it is
off the radar compared to ARM and Intel. One interesting facet is
that Apple acquired PA Semiconductor who were developing a
very low powered version of PowerPC. Apple are rumored to be
producing chips embedding this processor so future Apple MIDs
and possibly even future iPhones could end up with PowerPC,
although it seems unlikely that Macs themselves will switch back
due to the body of software that has just been expensively
converted to Intel.

Ignoring the PowerPC (which at most may be a player with
Apple) the bottom line is that Atom is more power-hungry and
more costly (because it really is more expensive to manufacture)
than ARM. Intel may be banking on getting a generation ahead in
manufacturing process as a way to reduce both power and cost,
but that won’t help anyone going through TSMC. ARM is much
lower powered and so offers the prospect of a MID that has days
of battery life (like the (ARM-based) Amazon Kindle has
already, but with very different screen technology).

32

My gut feel is that a MID will be more like a souped up
smartphone than a dumbed down PC, and so Atom will lose to
ARM. In fact I think the smartphone and MID markets will
converge. Microsoft will lose unless they port to ARM. There
will be no overall operating system winner (like with
smartphones). But a few minutes with Google will find you lots
of people with an opposing view to mine.

ESL and software signoff
Gary Smith pointed out recently that one of the reasons that
Cadence is struggling is that the fastest growing part of the
market has been ESL, the most advanced design groups are using
more and more ESL tools and Cadence has no offering in that
space (although they have now introduced their CtoRTL
product). Of course Gary is famous for predicting the last 5
booms in ESL but this time I think he might be right.

However, I think the problem may be worse than this, from an
EDA perspective. The most advanced design groups such as
Nokia and Apple aren’t designing much at even the ESL level.
Nokia has transferred its semiconductor design group to ST.
Apple didn’t do much (any?) semiconductor design, as far as I
know, in the iPhone and what they did in the iPod was
subcontracted to eSilicon and PortalPlayer. However, with the
iPad they seem to be doing at least some design themselves
again. The differentiation in most electronic systems is now in

the software. But EDA
companies can’t say
this too loudly even if
they realize it, since the
bulk of their money
comes from
semiconductor
designers.

The opportunity for
EDA would be to
expand to encompass
the entire design

 33

process, at the very least the semiconductor, board, software
subsystem, even if not the mechanical and manufacturing part.
But nobody knows how to make money at this. It is probably a
consulting business and it is quite possible that the current
downturn will throw up someone who can put the pieces
together. I’d bet on someone like PTC or Dassault rather than
Synopsys or Cadence to do this though. They already see the
bigger picture.

One missing link is modeling. To do software design for
electronic products requires a model of the electronics, and it is
hard to produce that automatically. As more transactional level
SystemC modeling is done, and as technology from companies
like Carbon improve, the models thrown off as a by-product of
the semiconductor deign process are starting to be much more
useful for this. ARM are switching to using automatically
generated Carbonized models instead of writing their own cycle-
level accurate models going forward, for example.

This moves us closer to what I call “software signoff” where the
electronic design process becomes very software-centric. The
purposes of semiconductors and microprocessors are simply to
run the software fast enough and at low enough power to make
the end-product successful. The underlying technology to do this
is some mixture of high-level C/C++ synthesis, IP blocks,
automatic assembly of peripherals, buses and device- drivers,
modeling to link the hardware and software. In short, what we
call ESL. But the perspective is a bit different. The purpose of
software signoff is not to produce a chip for people to program,
but rather to accelerate a software implementation with very little
effort. Once the software implements what you need, it should be
pushbutton (or at least fairly automatic) to build a chip or to map
the software onto an existing platform.

I took a dig at Gary Smith for being early predicting huge growth
for ESL, but I can remember preaching about software in
semiconductor companies when I was at VLSI over a decade ago.
So I was even further ahead of reality in predicting the move of
differentiation to software.

34

The Economist on semiconductor
Jerry Sanders, the erstwhile CEO of AMD, was famous for
saying that “real men have fabs.” So of course it was interesting
that AMD should be just about the first integrated device
manufacturer (IDM) to go fabless when it sold off its fabs to
Middle Eastern private equity that renamed them Global
Foundries.

There’s an interesting in a recent Economist (the magazine that
insists on calling itself a newpaper) on the state of the
semiconductor industry. They also have the view that there will
primarily be three fabs, Samsung in memory, Intel in
microprocessors and TSMC for foundry. The rest will be
“nationalistic” ventures in need of regular government bailouts.

For instance, they open with a look at Saxony (Dresden) where
there are two main fabs. Qimonda (bankrupt and unlikely to
resurface in anything like its original form) and Global Foundries
whose German fab I would describe as “not closed yet”
depending on the health or otherwise of AMD. Part of the
problem with fabs is that they have got too expensive even for
governments to simply pour money into. Fabs are a capital-
intensive business with long-leadtimes so they tend to be feast or
famine. And right now in the current downturn they are famine.
DRAM spot prices are a quarter of what they were a year ago;
good money then, not so much any more.

One comparison that I hadn’t thought of is that fabs cost a couple
of times as much as a nuclear power station. They are
increasingly automated so don’t even create much employment,
and with electronic systems increasingly removed from their
manufacture, the high value part of the chain isn’t helped by
having a fab nearby. “Designed by Apple in California and
manufactured in China” as it says on the iPhone box. With, I
believe, an Infineon chipset presumably made in Germany.

Europe, in particular, is in bad shape in semiconductor since it
has so few fabless semiconductor companies (except in Israel,
traditionally treated as part of Europe for the electronic market).
European technology has always suffered from big company

 35

syndrome, especially in France and Germany. I once asked a
senior executive at Bull (then a large not-dead-yet French
computer manufacturer) why there were no equivalents of Sun
Microsystems in Europe. “Because the European governments
would pour money into Siemens and Bull to build workstations,
and we’d be successful enough to kill off any small companies
but not successful enough to win,” was the gist of his reply.
Semiconductor is like that: it’s all NXP (the old Philips
Semiconductors), Infineon (the old Siemens semiconductor
division), and ST Microelectronics (a merger of French Thomson
Microelectronics with Italian SGS). All European champions
who have consumed any Euros available for investment without
actually achieving a world-class scale (ST being far and away the
most successful of the three).

With 18” wafers maybe on the horizon (but with the
semiconductor equipment manufacturers balking since they
haven’t even yet recovered the investment they had to make for
12” conversion) the price of entry into the fab world is only going
to go up. Semiconductor delivers chips incredibly cheaply, but it
is a mass production process. And the required mass is going up
not down, meaning greater and greater returns to scale. Intel talks
of only requiring a single fab for their entire production and
wanting separate fabs mainly for risk reduction (fire, political
instability, losing the process etc).

iSuppli report on process transitions
A recent iSuppli report has been getting a lot of attention. It
somewhat predicts the end of Moore’s law. If you look at the
graph you can see that no process is ever predicted to make as
much money at its peak as 90nm but that all the different
subsequent process generations live on for a long time as a many-
horse race.

I’ve often
said that
Moore’s law
is an
economic

36

law as much as a technical one. Semiconductor is a mass
production technology, and the mass (volume) required to justify
it is increasing all the time because the cost of the fabs is going
up all the time. This is Moore’s second law: the cost of the fab is
also increasing exponentially over time.

So the cost of fabs is increasing exponentially over time and the
number of transistors on a chip is increasing exponentially over
time. In the past, say the 0.5um to 0.25um transition, the
economics were such that the cost per transistor dropped, in this
case by about 50%. This meant that even if you didn’t need to do
a 0.25um chip, if you were quite happy with 0.5um for area,
performance and power, then you still needed to move to 0.25um
as fast as possible or else your competitors would have an
enormous cost advantage over you.

We are at a different point on those curves now. Consider moving
a design from 65nm to 32nm. The performance is better, but not
as much as it used to be moving from one process node to
another. The power is a bit better, but we can’t reduce the supply
voltage enough, so it is not as big a saving as it used to be
moving from one node to another and the leakage is probably
worse. The cost is less, but only at high enough volumes to
amortize the huge engineering cost, so not as much as it used to
be. This means that the pressure to move process generation is
much less than it used to be and this is showing up in the iSuppli
graph as those flattening lines.

Some designs will move to the most advanced process since they
have high enough margins, need every bit of performance, every
bit of power saving, and manufacture in high enough volume to
make the new process cheaper. Microprocessors, graphics chips
are obvious candidates.

FPGAs are the ultimate way to aggregate designs that don’t have
enough volume to get the advantages of new process nodes. But
there is a “valley of death”, where there is no good technology,
and it is widening. The valley of death is where volume is too
high for an FPGA price to be low enough (say, for some
consumer products) but the volume isn’t high enough to justify
designing a special chip. Various technologies have tried to step
into the valley of death: quick turnaround ASIC like LSI’s

 37

RapidChip, FPGAs that can be mass produced with metal mask
programming, laser programming, e-beam direct-write. But they
all have died in the valley of death too. Canon (steppers) to the
left of them, Canon to the right of them, into the valley of death
rode the six hundred.

Talking of “The charge of the light brigade,” light and charge are
the heart of the problem. Moore’s law involves many
technologies but the heart of them all is lithography and the
wavelength of light used. With lithography we are running into
real physical limitations writing 22nm features with 193nm light,
with no good way to build lenses for shorter wavelengths. And on
the charge side no good way to speed up ebeam write enough.

So today, the most successful way to live in the valley of death is
to use an old process. Design costs are cheap, mask costs are
cheap, the fab is depreciated. Much better price per chip than
FPGA, better power than FPGA, nowhere near the cost of
designing in a state-of-the-art process. For really low volumes,

you can
never
beat an
FPGA,
for
really
high
volumes
you
won’t
beat the
most
advance
d
process,
but in
the
valley of
death
different
processe

s have their advantages and disadvantages.

38

However, if we step back a bit and look at “Moore’s law” over an
even larger period, we can look at Ray Kurzweil’s graph of
computing power growth over time. This is pretty much
continuous logarithmic growth for over a century through five
different technologies (electromechanical, relay, tube/valve,
transistor, integrated circuit). If this logarithmic growth continues
then it might turn out to be bad news for semiconductor, just as it
was bad news for vacuum tube manufacturers by the 1970s.
Something new will come along. Alternatively, it might be
something different in the same way as integrated circuits contain
transistors but are just manufactured in a way that is orders of
magnitude more effective.

We don’t need silicon. We need the capabilities that most
recently silicon has delivered as the substrate of choice. On a
historical basis, I wouldn’t bet against human ingenuity in this
area. Software performance will increase somehow.

What will I want from my devices?
Earlier this year, Paolo Gargini gave the keynote at DesignCon.
He is an Intel fellow and director of technology strategy for their
manufacturing group. He discussed three market enablers that
would drive innovation and new products. He wasn't being
particularly Intel-centric but rather looking at the industry, since
this was a keynote. Those three drivers were:

Over a billion mobile Internet users

100 megabit/second
wireless throughput

Availability of over a
billion transistors for
portable chip designs.

The first interesting
thing to notice about
these three drivers is that
they are all portable.
Most silicon is going

 39

into one of two areas: portable devices, or server farms to form
the compute cloud to talk to the portable devices. The first is
much more important as a market since we all have a few
portable devices of our own whereas we only make occasional
use (“1,700,000 results in 0.22 seconds”) of the cloud. Enormous
though those server farms are, with literally hundreds of
thousands of servers, they are a shared resource. I remember
reading somewhere (I can’t find the reference) that 2008 was the
first year that more memory was shipped in cell-phones than in
PCs. Even for memory, which has to be the majority of the
silicon area in a server, the cell-phones contain more.

This is the end of a transition that has been going on for decades:
that which was over the air is moving onto wires; that which was
wired is moving onto the air. TV is moving from broadcast to
cable (a transition that is largely complete). Telephone is moving
from wire to wireless, a transition that is complete for anyone
under about 30. My kids will never own a landline phone. When
they move into an apartment they call the cable company for TV
and internet; it doesn’t cross their mind to call the phone
company, they’ve already got a cell-phone.

Internet is halfway through the transition. Within the home and
office it has largely moved onto the air to wireless routers, but
then goes over wire backhaul. With smartphones like the iPhone,
Blackberry and Palm Pre it is moving more and more onto the air
completely, bypassing the router. It is not that far off that we’ll be
dropping our home internet service since we get all that with our
cell-phone and our laptops have it built-in too, or maybe they
parasitically piggy-back on our phones. We could today with our
iPhones if AT&T would let us, or if we spend about 5 minutes on
the internet to find the right file to install to turn on tethering
anyway. But even 3G data is still too slow for more than
occasional use.

Next up is the netbook space (or whatever they end up being
called, apparently "netbook" is a Psion trademark). If all the
intelligence is in the cloud we can get away with lower-powered
machines at our end. Although there are some interesting
technical and business issues (Atom vs ARM, Linux vs Android
vs Windows vs Symbian) I think the most interesting challenge is

40

to decide how big we want our devices to be. I had a Palm for
years, from back when they were still called Palm Pilot and were
made by US Robotics. But I switched my Treo for an iPhone, but
the screen is still too small for lots of things. I have a Kindle,
great for reading but no color and a crappy keyboard. I have a
MacBook but it is heavy and doesn’t fit in my pocket, and not a
great screen for reading a book on. I don’t have the big
KindleDX but the one person I know who does loves it. As
screen and compute technology improve, the human interaction
will be the limiting factor. Voice recognition seems to be pretty
solid now, Nintendo Wii type technology works fine and there
are demos out there of the same sort of thing without needing a
controller at all, just a camera to watch you.

It is going to be fascinating to find out what I actually want.

Changes in relative value
It’s interesting how the relative values of things change over
time. Agatha Christie, looking back on her early life, remarked
that she “couldn’t imagine being too poor to afford servants, nor
so rich as to be able to afford a car.” I assume that by the time she
died she drove but had no servants, like most of the rest of us.

One of the biggest drivers of changes in relative values has been
the exponential improvement in semiconductor technology due to
Moore’s law. Even those of us in the business underestimate it.
People just aren’t very good about thinking about exponential
change. I can remember running the numbers and working out (a
long time ago) that we should have workstations that ran at
10MIPS, with a megabyte of memory and 100 megabytes of disk.
What didn’t even occur to me was that these would not be
refrigerator-sized boxes, they would be notebook computers; or
even Palm Pilots. And a high-end 1 BIPS “supercomputer” with
16 gigabytes memory and a 2 terabyte disk would have seemed
totally unbelievable to me, even as I read the numbers off the
graphs. But that’s what I’m typing this on.

If you are not in a business where exponential change is the
norm, people find it really had to think about. For example, in a
study called “How laypeople and experts misperceive the effect

 41

of economic growth” people were asked what would be the
overall increase in national income in 25 years if it grew at 5%
per year. Over 90% underestimated and only 10% of them were
even within 50%. Surprisingly, the experts weren’t much better
than the laypeople. Quick, what is the percentage increase? See
the end of the entry for the answer.

If the timescales are extended more then the numbers become
even more dramatic. Alex Tabarrok in his TED talk showed that
if the world GDP continues to increase at 3.3% per year for the
rest of this century (below what it has been running at) then the
average per capita income in the world will be $200,000. That’s
the world average, not the US which should be in the millions.
Our great-grandchildren will be much richer than us (if we
manage to avoid catastrophes like blowing up the world).

However, there is also a problem with our thinking when going
the other way. Those of us in electronics and semiconductor tend
to think other industries are basically like ours, with R&D driving
an underlying exponential growth and thus the accompanying fast
upgrading of old equipment. Battery technology, for example,
doesn’t increase exponentially in line with Moore’s law. It would
be great if an AA battery could contain 1000 times as much
power as it could back in 1990, let alone a million times as much
as it held in 1970. You’d only need one for your Tesla roadster.

Our cell-phones don’t last too long, not because they break but
because the new ones are so much more powerful. So we junk
them after a couple of years, along with our computers. But that’s
not true for cars. No matter what great new change in cars
happens (better MPG, lower emissions, super airbags, whatever)
then it takes 20 years for most cars to get it. Many of the cars that
will be on the road in ten years are already on the road today.
Power stations, bridges, railroads, aircraft are all on even longer
timescales. For example, I just looked and over 60% of all
Boeing 747s ever built are still active, including some that first
flew in 1969.

When part of life improves exponentially and part doesn’t is
when we get the type of dissonance that Agatha Christie
experienced from unexpected changes in relative costs.
Amazingly, and luckily, disk drive capacity has improved even

42

faster than Moore’s law even though it depends (mostly) on
different technology breakthroughs. But things involving large
amounts of physical stuff, like metal, just can’t change very fast.
Henry Ford would be amazed at various features of our cars, but
he’d still recognize them. Early computer pioneers wouldn’t have
a clue about a microprocessor.

The answer to what would be the overall increase in national
income if it grows at 5% per year for 25 years is about 250%. A
good rule of thumb everyone should know is that if something
increases exponentially (compound interest) by x% then it takes
70/x years to double. So in this case it will double in 14 years and
almost double again in 28 years. So about 3.5x in 25 years, which
is a 250% increase.

What should EDA do next?
Which are the interesting areas of EDA right now? As a general
rule, I think that the answer is "the ends" which today means the
architectural level and the transistor layout level. There will
always be some interesting areas in between too, of course, but
the main flow from RTL to layout along with the respective
verification methodologies are largely solved and so there is
limited scope for major innovation.

The transistor layout level is really about the interface between
EDA and semiconductor process. There are two things that make
it a challenge. One is the changes in lithography which have
complex effects on what can and cannot be put on a mask in a
form that will print. The second is that EDA largely operates with
a pass/fail model, whereas process is actually statistical. It is like
the way we regard signals as digital, which works most of the
time except occasionally the analog nature of signals breaks
through when a signal changes too slowly or some other unusual
effect causes the illusion to break down.

The architectural level is where chips and software intersect.
Chip design people tend to think of the architectural level as
somewhere that the system designers make a start on chip design.
But a better way is to think of the software as a specification of
the system and the only purpose of the chip is to run the software.

 43

Why would you not just run code on one of the on-chip
microprocessors? Only for 3 reasons: to do so would be too slow,
to do so would consume too much power, or you can’t do it in
software without a special peripheral (for example, analog).
Increasingly SoCs are processors, buses and memory, along with
specialized IP blocks (which may themselves contain processors)
for performance, power or analog reasons.

The big challenge in a system like that is getting the software
right. I keep waiting for the virtual platform concept to really take
off, since I’m convinced it is a better way to do development.
Look at all the complaints about inaccuracy in the iPhone
simulator (since it just cross-compiles) or the difficulty of doing
performance analysis since you need to do it on the real phone.
SoCs are much more complicated since typically they have
multiple processors with different architectures since code
running on (say) a Tensilica or ARC processor optimized for
audio processing has very different characteristics from running
the same code on an embedded PowerPC.

But the block diagram of the virtual platform is actually the chip
specification as well.

I think that moving up to the architectural level should focus on
this platform level. Like Goldilock’s porridge, it is just right. It
contains just the right amount of detail. By using the platform to
run code, the software development can be done much more
productively. By using the platform as a specification on how to
integrate all the processors and IP, the chip can be created. It is
like using RTL but at a much higher level. With RTL we can
simulate it to get the chip functionality right, and we can use it as
an input to a (fairly) automatic process to create the silicon. The
virtual platform has the potential to play this role.

That would mean that the architectural virtual platform level
would become a handoff between the engineers creating the
systems and the lower level implementation. With synthesis
timing was the unifying thread across the handoff; with this sort
of architectural handoff it is communication within the software,
which interacts with timing, functionality and power, of course,
making it possible to optimize the SoC implementation.

44

People looking at ESL only as behavioral synthesis I think are
missing the point. It is like software engineers arguing about
details of language syntax. The hard problems are all about
writing large scale software or integrating dozens (or even
hundreds) of IP blocks quickly and getting the software working.
Yes, behavioral synthesis has its place as the ultimate in
“inlining” functions with extremely high performance and low
power, just as in the software world people occasionally hand
craft assembly code and sometimes measure cache hit-rates.

As Yoshihito Kondo, general manager of Sony’s design platform
division said, "We don't want our engineers writing Verilog, we
want them inventing concepts and transferring them into silicon
and software using automated processes."

That one sentence is a vision for what EDA should aim to
become.

GM and Cadence
What is the similarity between the problems and GM and those at
Cadence? Well, there are certainly plenty of differences, GM has
all sorts of problems which stem from over-generous union
contracts for one. But the thing that brought problems to a head at
both Cadence and GM have a similar basis.

In the early 2000s GM and Chrysler (and Ford and Toyota and
everyone else) sold a total of 16 million cars, small trucks and
SUVs each year. With low interest rates, basically everyone who
wanted and could just about afford one, bought a new car. Do the
math: 16 million times 6 years is 96 million vehicles which is
getting on for the number of households in the US (111 million),
or 40% of all adults (228 million). Going forward, not many
people are going to be buying new cars since everyone already
has one. Sales are expected to be maybe 10 million this year and
that may turn out to be optimistic. Cars last a long time these
days so, unless you crash your car and have it written off, it is a
discretionary purchase that can be delayed for years. This
problem is not unique to GM, Toyota’s sales numbers have fallen
about the same. In essence, the auto industry sold in 6 years all
the cars everyone would want for ten years while credit was easy

 45

and consumer confidence was high. GM is just the most
vulnerable due to bad management and bad union contracts, but
less vulnerable since you and I will be picking up the tab for all
this. I fully expect GM to behave just like British Leyland in
Britain, also publicly owned, did. They’ll lose a bucket of money
but the government will just shovel more money into their gaping
maw rather than see them shut down. (Here’s another statistic:
GM has to be worth more than it was in the early 2000s at its
peak before the taxpayers to get any of their money back).

Cadence in the Fister/Bushby era repeated the same mistake from
the Olsen era of selling in a period of time almost all the licenses
anyone was going to need for a much longer period of time. Once
you’ve sold in 3 years all the software anyone needs in 5 years, it
gets hard to make your number in the out 2 years.

Of course, both these are problems that time will fix. Eventually
people will want new cars again and probably GM will still be
there to sell them (since we’re covering all their losses). At least
with Cadence it’s not us that are going to pay. And with Cadence
it is a much shorter time period. Probably by the end of next year
they’ll have eaten a good part of their way through the “supply
tools, but accept that we’ve already been paid” and their number
should start to improve.

GM may take longer. And, of course, both companies have other
competitors (Synopsy, Toyota etc) ready to try to capitalize on
any upturn.

But to put things in perspective, on the day I wrote this,
Cadence’s market cap at $1.4B was almost exactly twice General
Motors ($700M).

Take the E out of EDA

As I said recently, I
think Sony laid down
the perfect long-range
plan for the EDA

46

industry. Here’s the money quote from Kondo-san again: "We
don't want our engineers writing Verilog, we want them inventing
concepts and transferring them into silicon and software using
automated processes."

First, note that this is not just about designing integrated circuits.
It’s about the big strategic issue of how you design products.
Those of us in EDA think that it is a fascinating industry with a
strange combination of deep technology and a sufficiently large
market to be an interesting business. As opposed to, say, TCAD,
the software used to design semiconductor processes and develop
process models without building silicon. I mean I’m sure it’s
interesting and there’s a market but it’s not EDA. It is a market of
5 PhDs in each fab in the world or about $20M/year. Certainly
necessary but not at the top of anyone's list of problems on any
given day.

Unfortunately, how we view TCAD is how the rest of the world
views EDA: an esoteric geeky thing that some people need to get
their job done but it’s not solving the real business problem.
Rocket science for rocket scientists.

There were always rumors that Cadence or Synopsys would buy
Wind River, the leader in embedded operating systems and tools
for embedded software development. I’m pretty sure discussions
took place but obviously no deal was ever done and Intel bought
them recently (as an interesting aside, that means that the
PowerPC guys, primarily Freescale, are largely dependent on
Intel for their RTOS and tools). So Wind River is on the verge of
becoming Intel’s captive embedded software capability.
However, EDA companies thinking about acquiring Wind River
was at least thinking in the right kind of way. How does the E get
dropped from EDA? How does it just become Design
Automation, encompassing everything from software to silicon,
boards, packages, supply-chain management. In short, how does
EDA achieve the Sony vision of inventing products and then
implementing them using automated processes.

How many people in EDA know what a BOM is? It is a bill of
materials, a list including the price, of every component in a
product. In most consumer industries, design is getting the BOM
right because otherwise the product cannot be built for a price

 47

that the market will support. Design costs figure into the equation
to some extent, but in the end for a volume product the final price
of all the components is what matters. DA without the E is at
least somewhat about BOM optimization.

RIM, the Canadian company that sells Blackberry, didn’t actually
design it. I don’t know the details but I assume they came up with
the basic concept and presumably wrote a lot of the higher-level
software, both on the phone and on the server systems that
implement the push mail. But then they used an “automated
process” to get the guts designed. They subcontracted it to
TTPcom in Cambridge England who put a lot of experts in
software and phone design on the job. They wrote all the Verilog,
and the call processing stack and designed the radio. RIM stayed
focused on the user experience and how to deliver that in
software applications.

But that’s not the true “automated process” Sony wants to have
access to.

EDA press
Listen to all those marketing engines are revving up to a fever
pitch waiting for the green light. But who should they pitch to?
Customers, obviously, you eventually have to win the ground
war. But what about the air war? There isn’t really a press
following EDA any more, but there are lots of us bloggers and
some newsletters, and without really planning it we’ve become
one of the channels that potentially marketing can use to reach
their customers.

But it’s a new game and nobody knows how to play yet. I’ve
been approached by several PR agencies and marketing folk
about product announcements, interviews and so on. Individual
product announcements are not interesting to me, and I’m
assuming you readers wouldn’t want to wade through them all
anyway. There are other places for that. But product
announcements in aggregate are interesting: What are the new
trends? Which new areas are hot? Which new startups are
interesting in those areas? What hard problems are getting
cracked?

48

It is a major challenge for a smaller company to get its message
out in this brave new world. Big companies like Cadence and
Synopsys have their own internal tradeshows and regularly meet
customer executives to brief them. Somebody commented on one
of my blog entries about a TSMC engineer saying “I don’t go to
DAC any more; if I want to talk to an EDA company I make
them come to us.” That’s fine as long as you know about the
company, but if you take that attitude you’ll never find out early
about hot new technology that might turn out to be important.

Remember Bill Joy’s law: no matter where you are, the smartest
people are somewhere else. You just don’t know what is going to
turn out to be important, so you need to look at it all. But it is
increasingly difficult to immerse yourself in the stream of raw
information that might allow you to spot something. In its
heyday, when both Richard Goering and Mike Santarini and
more were there, not much happened in EDA that you’d miss if
you read EEtimes each week. Now, not so much.

That’s one reason that, for the time being, I think DAC remains
strong. It’s the only place for that kind of serendipity. Everyone
has a story of some major customer finding them by chance at
DAC. Not the big companies of course (“Synopsys. I didn’t know
you had any synthesis products!") but startups. When I was at
VaST we acquired Intel as a customer (or “a large Santa Clara
based microprocessor company” since I don’t think Intel likes
anyone claiming them as a customer) when a couple of engineers
happened to pass by the booth.

 2009 was the first DAC I've been to where I was officially
classified as "press." I got in for free as press, I got invited to
various press/analyst events (but not all of them), I got invited to
various other events since I'm on the press list. "I have seen the
future and it is us." In some ways it feels like EDA has been
abandoned by the traditional press so we'd better just do it
ourselves, and with our deeper knowledge do it better. I don't
know if I succeed but that's certainly part of what I try and do on
this blog.

It’s not clear what the channels to reach customers are going to
morph into. To tell the truth, since it is so unmeasurable, it was
always unclear even how much EDA customers were reading the

 49

right articles in EEtimes versus us EDA insiders keeping an eye
on the competition.

Of course what is happening in the EDA trade press is mirroring
what is going on in the wider world of journalism in general.
Even the New York Times is struggling financially and probably
will not make it in its present form. The San Francisco
Chronicle’s days are almost certainly limited. Time and
Newsweek are hemorrhaging subscribers. Nobody knows what
anyone will pay for (except the Economist, which seems to have
some unique hard to reproduce formula). If it is hard to get your
message out in EDA, it is also getting harder to get it out if you
are Toyota or Colgate too. Nobody watches the same channels,
they all have DVRs and skip ads, they don’t read so many paper
magazines. When everyone is watching YouTube and updating
their Facebook wall, they are not learning about the existence of
new products, even of ones they’d love to discover.

Mac and PC
The PC market is obviously one of the huge markets for
semiconductors. I think that the semiconductor content in cell-
phones (in aggregate) is now greater than in PCs but I can’t find
the reference I remember.

I was at Google I/O last year. One
thing a friend had told me was that
essentially all web development is
now done on Mac. It seemed to be
true. I would guess that only about
5% of the machines that I saw over
those two days were Windows
PCs, the rest were all Macs. Of
course Apple is riding high with
the iPod and the iPhone as well, it
is no longer just a computer
company (leading it to drop
“computer” from its official name).

Steve Ballmer isn’t worried, or if
he is he is trying not to show it.

50

“Apple's share globally cost us nothing,” he said. “Now,
hopefully, we will take share back from Apple, but you know,
Apple still only sells about 10 million PCs, so it is a limited
opportunity.” It might even be true, since a Windows license
probably costs the same whatever the power of the computer.

The PC market is really a number of different markets at different
price points, and Apple doesn’t play in the low end of the market.
Apple has the same strategy in the phone market. Nokia is the
volume leader by a long way, but a lot of that volume made up of
very low-end low-margin phones. At the high end, where Apple
plays, Nokia is way behind iPhone and RIM’s BlackBerry. In the
consumer (as opposed to business market) iPhone is the clear
leader. And it shows in the numbers: Apple makes more profit in
mobile phones than Nokia (or anyone else for that matter).

But the change is starting to show up in the numbers. According
to NPD, Apple has 91% market share for PCs costing over
$1,000. Of course a cynic would say that’s just because Macs are
so expensive, but these are the computers used by professional
programmers, graphic designers and musicians. It is true that the
average ASP of a Windows PC was $515 but for Mac it was
$1,400. I would guess the profit is much more than 3 times as
much per Mac as per PC.

So those “laptop hunters” ads have it correct. You can get a PC
for much less than a Mac, but it’s not really an equivalent
machine. Apple has gone from 60% of the over $1,000 market at
the start of last year to that 91% number now. Last week Apple
beat analysts estimates and shipped 2.7M Macs.

These numbers are retail sales, so it does ignore the PCs
stronghold of large businesses that, presumably, buy through
channels not classified as retail. The market seems to be splitting
into two. Inside big businesses, programmers and users all use
PCs and develop applications that run on top of their SAP and
Oracle systems. And when it comes to cell-phones they use
Blackberrys since they can be centrally administered. Outside big
businesses and in internet companies, programmers and high-end
users all use Macs. And when they get a cell-phone it’s an
iPhone.

 51

Microsoft announced its results too. They missed by $1B for a
17% year on year decline, and the Windows PC division declined
29%, nearly twice as bad as the overall company. Of course
there’s a recession on (although Apple doesn’t seem to be
noticing), and Microsoft is just on the point of shipping Windows
7, so this might eat into sales for a couple of quarters before,
although it’s never been particularly cyclical in the past.

So just like Nokia’s CEO statement that iPhone is a “niche
product,” Apple ships “only 10 million PCs.” But it ships all the
high margin ones to the prime customer demographic. If you look
at profit and not volume, you are not so keen to use words like
“niche” and “only.” Especially given that high end phones
become low end phones as they get cheaper, not the other way
around.

PowerPC
At DAC, I happened to bump into Kaveh Massoudian of IBM,
who is also the CTO of power.org, the consortium that deals with
all things PowerPC. I previously met him when I was at Virtutech
which was the era when power.org was formally established. A
little bit of history: PowerPC was created in 1991 jointly by IBM,
Freescale (then Motorola Semiconductor) and Apple (Macs
would all become PowerPC based before the switch to Intel
architecture a few years ago). So it was always a multi-company
effort. It was designed as a 64/32 bit scalable architecture from
the beginning. power.org was created in 2004 to pull together the
whole ecosystem around the architecture.

PowerPC is really the third architecture, along with Intel and
ARM. Their high level strategy is to let Intel own the PC market,
let ARM own the wireless market (“let” as in admit that it is
game-over in those markets) and try and own as much as possible
of everything else: video games, aerospace, military, networking,
base-stations, automotive etc. Did you know that the Wii, the
Xbox360 and the Playstation game consoles are all based on
PowerPC? Of course MIPS is still around, as are other processors
(especially in automotive) but they are largely confined to certain

52

segments. For instance, MIPS is dominant in the set-top-box
market (all those DVRs).

The challenge that PowerPC faces is that, outside of video game
consoles, most of these markets are not that large individually. To
design an SoC really requires the possibility of shipping 10M
units, and if the market is going to be shared with other
competitors then that means a market of, perhaps, 50M units.
There just aren’t that many markets that big outside of PC,
wireless and video-game.

Processor business is all about software. Once a software base
has been built up then binary compatibility means that it is
impossible to displace one processor with another based on any
features of the processor. So power.org is focusing much more on
the software dimension. IBM is putting some of the Rational
technology together with (I’m assuming) Eclipse and so forth to
create much more productive software development
environments for embedded design. It has been a constant theme
this DAC that somebody needs to do something to improve the
way embedded software is developed. IBM, for one, seems to at
least be trying.

Another thing I asked him was what he thought of Wind River
being acquired by Intel. A lot of Wind River’s business is tied to
the PowerPC architecture; for example, the Boeing 787 software
is PowerPC and Wind River based. It is the same the other way
round. A lot of PowerPC business is tied to Wind River. It is not
completely so, Montavista and Green Hills also have strong
positions in certain end markets. Kaveh said he didn’t entirely
understand why Intel had done it. Wind River is not used much
on Intel architecture designs, even Atom-based ones. Maybe Intel
wants to change that or maybe they simply decided to own a key
piece of their competitors’ infrastructure. Intel has historically, of
course, owned the PC (along with AMD shipping a little) but
they’ve not done very well outside that space. With the Atom
deal with TSMC they are clearly trying to change that and start to
get traction in the SoC space. If systems are software and silicon,
then Intel clearly intends to be a player there. Plus they now have
a relationship with many PowerPC customers that they'd like to

 53

understand better and, presumably, eventually switch to Intel
silicon in the long term.

Semiconductor cost models
One of the most important and under-rated tasks in a
semiconductor company is creating the cost model. This is
needed in order to be able to price products, and is especially
acute in an ASIC or foundry business where there is no sense of a
market price because the customer and not the manufacturer
owns the intellectual property and thus the profit due to
differentiation.

For a given design in a given volume the cost model will tell you
how much it will cost to manufacture. Since a design can
(usually) only be manufactured a whole wafer at a time, this is
usually split into two, how many good die you can expect to get
on a wafer, and what the cost per wafer is. The first part is fairly
easy to calculate based on defect densities and die size and is not
controversial.

In fabs that run only very long runs of standard products there
may be a standard wafer price. As long as the setup costs of the
design are dwarfed by other costs since so many lots are run in a
row, then this is a reasonable reflection of reality. Every wafer is
simply assumed to cost the standard wafer price.

In fabs that run ASIC or foundry work, many runs are relatively
short. Not every product is running in enormous volume. For a
start, prototypes run in tiny volumes and a single wafer is way
more than is needed although it used to be, and may still be, that
a minimum of 3 wafers is run to provide some backup against
misprocessing of a wafer and making it less likely to have to
restart the prototype run from scratch.

Back when I was in VLSI we initially had a fairly simple cost
model and it made it look like we were making money on all
sorts of designs. Everyone knew, however, that although the cost
model didn’t say it explicitly the company made lots of money if
we ran high volumes of wafers of about 350 mils on a side, which
seemed to be some sort of sweet spot. Then we had a full-time

54

expert on cost-models and upgraded the cost-model to be much
more accurate. In particular to do a better job about the setup cost
of all the equipment when switching from one design to the next,
which happened a lot. VLSI brought a design into production on
average roughly daily and would be running lots of designs, and
some prototypes, on any given day. The valuable fab equipment
spent a lot of the day depreciating while the steppers were
switched from the reticles for one design to the next. Other
equipment would have to be switched to match the appropriate
process because VLSI wasn’t large enough to have a fab for each
process generation so all processes were run in the same fab (for
a time there were two so this wasn’t completely true). Intel and
TSMC and other high volume manufacturers would typically
build a fab for each process generation and rarely run any other
process in that fab.

The new cost model shocked everyone. Finally it showed that the
sweet spot of the fab was high volume runs of 350 mils on a side.
Large enough that the design was complex and difficult (which
we were good at) but small enough not to get into the part of the
yield curve where too many die were bad. But the most shocking
thing was that it showed that all the low volume runs, I think
about 80% of VLSI’s business at the time, lost money.

This changed the ASIC business completely since everyone
realized that, in reality, there were only about 50 sockets a year in
the world that were high enough volume to be worth competing
for and the rest were a gamble, a gamble that they might be chips
from an unknown startup that became the next Apple or the next
Nintendo. VLSI could improve its profitability by losing most of
its customers.

Another wrinkle on any cost model is that in any given month the
cost of the fab turns out to be different from what it should be. If
you add up the cost of all the wafers for the month according the
cost model, they don’t total to the actual cost of running the fab if
you look at the big picture: depreciation, maintenance, power,
water, chemicals and so on. The difference is called the fab
variance. There seemed to be two ways of handling this. One,
which Intel did at least back then, was to scale everyone’s wafer
price for the month so it matched the total price. So anyone

 55

running a business would have wafer prices that varied from one
month to the next depending on just how well the fab was
running. The other is simply to take the variance and treat it as
company overhead and treat it the same way as other company
overhead. In the software group of VLSI we used to be annoyed
to have our expenses miss budget due to our share of the fab
variance, since not only did we have no control over it (like
everyone else) it didn’t have anything to do with our business at
all.

Software signoff again
What do you think the dominant design paradigm for electronic
systems is going to be going forward?

As I’ve said before, I believe that it is going to be taking
software, probably written in C and C++ , and synthesizing parts
of it into FPGAs and compiling the rest into binary to run on
processors in the FPGA. This is what I’ve been calling software
signoff for a long time. It’s more than just the software necessary
to run on the FPGA or SoC. It is signing off hardware that co-
optimizes the software. The idea that conceptually we need to get
the software that specifies the system right, and then hardware
design is just creating a silicon fabric (SoC or FPGA) which is
able to run the software high enough performance and at low
enough power (because otherwise why bother to do anything
other than simply execute it). Power, performance and price, the
3Ps again.

There are two key pieces of technology here. The first is high-
level synthesis, which should be thought of as a type of
compilation of behavior into hardware. In the end the system
product delivers a behavior or application. It is not as simple
as some sort of productivity tool as RTL designers move up the
next level. RTL designers will be bypassed not made more
productive.

The other key technology is FPGA technology itself. Today
FPGAs offer almost unlimited capacity and unlimited pins.
FPGAs will become the default implementation medium. The
classic argument for not using FPGAs used to be that you could

56

reduce the cost enough to amortize the cost of designing a chip.
But very few designs will run in high enough volume to amortize
the cost of doing an SoC or ASIC in today’s most leading edge
processes, and the cost and risk of dealing with the variability (in
terms of simulating hundreds of “corners” and the difficulty of
getting design closure) is rising fast. FPGA takes a lot of the
silicon risk out of the implementation.

Did you know that FPGAs represent more than half the volume
of leading edge process nodes at the big foundries like TSMC
and Samsung? FPGAs are the first logic in a new foundry process
and drive the semiconductor learning curve. This is due to FPGA
structural regularity that is much like memories but in a standard
CMOS logic process.

If you need to do a 45nm design then far and away the easiest
approach is to go and talk to Xilinx or Altera. To design your
own chip is a $50M investment minimum so you’d better be
wanting tens of millions of them when you are done. Only the
highest volume consumer markets, such as cell-phones, or the
most cutting edge performance needs, such as graphics
processors, can justify it.

The decline in the FPGA market in the current downturn conceals
the fact that new designs in the largest and most complex devices
is growing at over 30% CAGR. It may only be 12% of the market
(which, by the way, is something over 15,000 designs per year)
but it generates 40% of the FPGA revenue. These designs, and
the methodology for creating them, will go mainstream until it
represents the bulk of the market. Not just the FPGA market, the
electronic system market. Designing your own chip will be an
esoteric niche methodology akin to analog design today. Howeve
these new high complexity FPGA require an ASIC-like design
methodology, not just a bunch of low-end tools from the FPGA
vendor.

The challenge for EDA in this new world is to transition their
technology base to take account of this new reality and go where
system-scale designs are implemented in FPGAs. That is largely
not in the big semiconductor companies that currently represent
the 20% of customers that brings 80% of EDA revenue. It is
much more dispersed similar to the last time that design was

 57

democratized with the invention of ASIC in the early 1980s that
pushed design out into the system companies.

A lot of RTL level simulation will be required. And one of the
high level synthesis companies will be a big winner. In the
startup world there are a few companies attempting to offer HLS:
Synfora, Forte and AutoESL. Synfora and Forte has been at it for
a while (although Forte may be disqualifying themselves in this
vision of the future by only supporting SystemC). AutoESL has
started to make some progress as well, with one group at
Microsoft using just this methodology. Mentor is the current
leader with its Catapult synthesis; Cadence has created their own
CtoSilicon technology. But Synopsys, who has synthesis running
through their veins, have no real high level synthesis product
(and, unless they are doing it with people who are unknown in
the field, don’t have one in development). Synopsys does have
FPGA DNA through the acquisition of Synplicity. My opinion is
that once it becomes clear which HLS company is going to win,
Synopsys will likely acquire them and for a serious price to
complete their FPGA offering.

Is silicon valley dead?
Here’s a quote from Tom Siebel, the founder of Siebel Systems
that pioneered customer-relationship management before
Salesforce.com started to eat their lunch and Oracle bought them.

“I think Silicon Valley has been toppled from its pedestal. I think
information technology is much less important in the global
picture today than it was even 10-20 years ago. ... I think the
areas where people will be making a difference and making
important social and economic contributions will be in the area of
energy and bio-engineering. While there will be contributions in
bio-technology and bio-engineering and energy technology that
will come out of the valley, I do not believe it will have the type
of global leadership position in those areas that it did in
information technology.”

I’m not sure this is right. Firstly, I’m not sure information
technology is less important than it used to be. Of course
biotechnology and energy technology will become more

58

important and so IT will decline relatively, but I doubt it will
decline absolutely. I mean it’s not like the Internet is done
innovating.

I’m a little skeptical about some of the energy technology. In the
long term it will be very important. In the short term it is simply
farming government subsidies which is not a recipe for creating
game-changing technology. I’m with Vinhod Khosla that unless
the technology makes sense in the context of China and India,
then it is just feel-good technology akin to putting solar panels on
the roof of the Moscone center in the world’s most famously
foggy city.

Biotechnology is clearly increasing in importance. But there
seems to be plenty of it in Silicon Valley (which, of course, no
longer produces any silicon directly since that is not the highest
value part of the chain). Silicon Valley certainly knows how to do
innovation, create companies, manage intellectual property,
embrace change. Not attributes that are thick on the ground in,
say, Detroit. Or Washington, although it is now a big hub for
technology simply because of the vacuum sucking money up
from all over the US and disbursing lots of it locally in DC.
Interesting to note that Morgan Stanley held their big partner
offsite in Washington, not New York, for the first time ever. In
industry after industry, success is starting to come from getting
the government to write the rules your way rather than outright
competition (see automotive, pharmaceutical, banking, insurance,
to go along with the long standing agriculture, energy).

So I think that Silicon Valley will do fine (depending on
California's state governance not getting into a tax/exodus death
spiral as places like Detroit have done) although it is true that as
technologies develop they also proliferate into other parts of the
world. Silicon manufacturing was originated in Silicon Valley
almost exactly 50 years ago; now it is mostly in Asia. A lot of the
ideas in the PC (and Mac) originated in Silicon Valley at SRI and
Xerox PARC (not to mention Berkeley and Stanford) but
development is done everywhere. I’m sure other technologies
will be the same.

I think Silicon Valley has two unique attributes. Firstly, in the
same way as Hollywood is the easiest place (but not the cheapest)

 59

to make a movie since all the infrastructure is there, Silicon
Valley has all the infrastructure for creating innovative
companies. And secondly, Silicon Valley (and to a lesser extent
other parts of the US) is good at sucking in the best talent from
all over the world and integrating them into companies and
making them productive. The company I (a Brit) ran last year
was founded by an Israeli, had an Iranian CTO, a French lead
engineer, Dutch and Russian engineers, Korean and a Columbian
AEs to go with a couple of born in the US americans. The VC
board members and investors were a Cypriot and a Vietnamese
immigrant. Just look at the first two people there: an Israeli
founder and an Iranian CTO. I don't see that happening in Tel
Aviv or Tehran. They had to come here to do that.

Entrepreneurs ages
Entrepreneurs are all twenty-somethings straight out of college
these days aren’t they? Not so fast, it turns out that this is an
illusion. It’s probably true in some areas, such as social
networking, where the young are the target audience too (at least
initially).

But the Kauffman Foundation has done some research on the
ages of entrepreneurs which they announced earlier this summer.
Take a look at the chart below. First, I apologize for how hard it
is to read, Edward Tufte would not be pleased (and if you don’t
know who Edward Tufte is then rush and buy “The visual display
of quantitative information” immediately, and then perhaps his
other books too).

60

The chart shows how recently, if anything, older entrepreneurs
have been increasing. But at the very least is shows that there are
plenty of entrepreneurs at all ages.

Of course there are entrepreneurs who are even younger too. My
son works for YouTube and the most popular channel there is an
annoying teenage kid called Fred who speeds up his voice. He is
on track to be the first YouTube millionaire and is currently
making over $50,000/month by selling ads and merchandize.
There are 1.5M people subscribed to his channel.

Talking of being entrepreneurial, here’s one of my ideas. Most
sites on the internet are largely developed by people for people
like themselves, at least initially. On this basis I think older
retired people must be an underserved demographic. They are
also the richest age-group (in most countries there is a vast
transfer of money from young to old going on in ways that will
not be sustainable for the current younger generation by the time
they are old). And they have lots of time, which is a scarce
commodity. And many of them, although not all, are online. So I
haven’t managed to think of a great idea but I firmly believe that
this is a great place to look for an opportunity.

So entrepreneurs come in all ages although the kids that make it
big seem to get all the publicity.

 61

Designing a chip is like
You’ve probably tried to explain to somebody the unbelievable
scale of what it takes to design a modern chip with hundreds of
millions or billions of transistors. But even we have difficulty
with numbers when they get that large, like when we hear that
there are 500 billion galaxies in the universe. Large numbers just
don’t have that much impact. What’s another trillion dollars on
the national debt? One way to make that one clearer is that it is
roughly the amount taken in annually in income tax. So $1T of
debt means one year of everyone in the country paying double
their tax.

I was talking to an architect yesterday evening who was familiar
with AutoCAD ($3K/seat!) for 3D design and she was asking
how similar that was to IC design.

The usual analogy I use for designing an integrated circuit is that
it is like designing the Boeing 787 except doing it in 12 months
using a manufacturing technology that has never been used
before, on a design system that has never been used in production
for that manufacturing technology. And by designing a 787 I
mean all the parts, every part of every jet engine, every part of
every seat, pump and instrument.

Of course some subassemblies might have been used before, such
as the seats or the fuel-gauge (hey, IP-based design). But most
things, such as the landing-gear, will need at least some change.
Actually in terms of the count of parts this is underestimating
things but it’s not quite fair to compare a complex turbine blade
with a single transistor and count both as one part.

But here’s the thing I thought of last night that I’ve never
articulated before. Having designed the 787 on the computer, you
press a button and an amazing automated assembly plant take a
couple of months to manufacture one. And then you put it on the
end of the runway, put the throttles up to full and expect it to take
off first time, using engines that have never run before and flight
surfaces that have never flown before. Which it had better do,
since it is already scheduled to come into service in November
ready for the holiday market.

62

Then, unlike Boeing, the plane will be obsolete in 6 or 12
months. Next Christmas the 797 will be required, even bigger and
more complex. But it will need to fly first time too.

EDA for the next 10 years
Last year at ICCAD, Jim Hogan and I led an discussion on the
megatrends facing electronics and the implications going forward
for EDA. Basically we took a leaf out of Scoop Nisker's book,
who when he finished reading the news would sign off with "if
you don't like the news go out and make some of your own." So
we tried to.

Anyone whose being reading me regularly won't be surprised at
the position that we took. I managed to find some interesting data
from Morgan Stanley about how electronics is growing but it is
also fragmenting. PCs ship in 100s of millions; cell-phones in
billions (the world is expected to get to 100% penetration in a
couple of years) and the fragmented consumer market in 10s of
billions: car electronics, mobile video, home entertainment,
games, kindles, iPods, smart-phones and so on.

So the end market is growing strongly but individual systems
(with a few exceptions) are shipping in smaller individual
volumes.

Meanwhile, over in
IC-land the cost of
design has been
rising rapidly. For a
45nm chip it is now
$50M. There are two
problems with this
for EDA. One is that
the sticker price
means that a lot
fewer chips will be
designed, and second that the fastest growing part of the cost is
software (where EDA doesn't play much) now up to almost 2/3
the cost of design. But if a chip costs $50M to design then you'd

 63

better be shipping it into a market of 250M+ units or the
economics won't work.

 So we have a mismatch: fragmented consumer market requiring
low-cost low-volume designs. Semiconductor economics
requiring high-cost high-volume designs.

 The only way around this is aggregation at the silicon level,
along with reconfigurability and reprogrammability.

 The most basic form of aggregation is the FPGA, since the basic
gates can be used for pretty much any digital design. It's not very
efficient in terms of area or power, but it is completely flexible.

 The second form of aggregation is the programmable SoC. This
is something I've predicted for some time but I was surprised to
discover recently that some manufacturers have been building
these for several years. Indeed, Cypress gave me a chart showing
that they are on track to ship 3/4 billion of this by the end of the
year and should pass a billion next year. The programmable SoC
doesn't have completely uncommitted gates like an FPGA, rather
it has little building blocks for peripherals, both analog and
digital, that can be reconfigured into a wide range of different
devices. This can either be done one time to initialize the device,
or it can be done dynamically under control of the on-board
processor(s).

 The third form of aggregation is the platform. This seems to be
most successful in the wireless world, TI's OMAP being the most
well-known. But it has also been happening in digital video. At
some point it become more efficient to waste silicon by loading
up a chip with everything you might ever want, and
enable/disable by software, as opposed to eating the huge cost of
masks and inventory of specializing each derivative to perfectly
match the end customers needs.

 Jim carried on to talk about which type of products make money
in EDA. There is a range of types of tools from measurement,
modeling, analysis, simulation and optimization. The further to
the right on this list the more money customers are prepared to
pay and the most likely it will be that you can create and sustain a
competitive advantage for several years. Each tool needs to be
better, faster or cheaper and preferably all three in order to be

64

successful. If you can only have two they'd better be better and
faster. Cheaper in EDA has the same connotations as low-cost
heart surgeon. With so much on the line that's not the place to
economize.

 Ultimately this is moving towards what I call software signoff,
the inversion of the way about thinking about electronic systems.
Instead of thinking of a complex SoC with some embedded
software, a system is actually a big software system, parts of
which need to be accelerated by some type of semiconductor
implementation to make them economic (fast enough, low
enough power). We don't have the tools today to take complex
software and automatically build some parts in gates, assemble
IP, assign the software to processors and so on. But that is the
direction we need to move in.

 The mismatch between fragmented end-markets and high costs
of design is potentially disruptive and thus an opportunity to
change the way that design is done. I return to Yoshihito Kondo
of Sony's call to arms: “We don't want our engineers writing
Verilog, we want them inventing concepts and transferring them
into silicon and software using automated processes.”

 The VHDL and Verilog story
VHDL is, of course, one of the two main hardware description
languages dating back to the 1980s. The history of Verilog and
VHDL is quite interesting. Verilog was originally created by
Gateway Design Automation. Gateway was subsequently
acquired by Cadence for what seemed like a very high valuation
at the time, although of course it has probably been one of the
most successful acquisitions Cadence did when you think of the
sales of Verilog that they have made over the intervening years.
VHDL, which is actually one of those nested acronyms since it
stood for VHSIC Hardware Description Language, with VHSIC
further parsed down into Very High Speed Integrated Circuit.
The VHSIC program was run by the US DoD and VHDL looked
for a time that it might become the dominant standard, since
Verilog was a proprietary language owned by Cadence.

 65

 But Cadence opened Verilog up and let other people participate
in driving the language standard. As Gordon Bell once said, the
only justification for VHDL was to force Cadence to put Verilog
into the public domain. But having two languages has been a
major cost to the EDA industry for very little gain. VHDL was a
very powerful language but in many ways was less practical than
Verilog. For instance, you could define your own values for any
signal. But that meant that gates from one library wouldn't
necessarily interact properly with gates from another library
(sounds like some of the problems with TLM models in SystemC
that are finally being resolved). So that required a new standard,
VITAL, so that gate-level signals were standardized. The
richness of VHDL abstractions meant that it was and is used for
some of the most complex communication chips. Model
Technology (now part of Mentor) had probably the best VHDL
simulator that they sold cheaply, and that helped to make VHDL
more standard in the FPGA market than Verilog. Despite the fact
that a Verilog simulator is easier to write than a VHDL simulator,
it sold for a higher price for years. This has led to an odd
phenomenon where some of the most advanced chips are done in
VHDL, and many of the simpler ones.

Anyway, the dual language environment (and, of course,
SystemVerilog has arrived to make a third) continues to exist.
Almost all tools have, over the years, bitten the bullet and
provided dual language support for both VHDL and Verilog.
Often the front end for VHDL, which is a complex language to
parse, comes from Verific (as does the VHDL front-end for
Oasys's RealTime Designer).

Shake that EDA malaise
I have a sort of op-ed piece in Electronic Design that ended up
being headlined “To Shake Its Malaise, EDA Must Look To
Where Design Is Really Happening.” Journalists are constantly
complaining about bad headlines being attached to their
wonderful work, but in this case I think that the headline is a
good summary of what I say.

66

 The bottom line is that EDA, focused as it is on IC design in
advanced processes, is focusing on a decreasingly important part
of the overall electronic design process. Yes, you can’t design a
leading-edge chip without EDA so the market isn’t going to go
away. But most electronic systems use off-the-shelf chips rather

than designing them from the ground up.
There will always be a market for bespoke
Saville Row tailoring of expensive suits,
but the real market is at Macy’s,
Nordstrom’s and Mens’ Wearhouse.

 Here’s an example. The biometric
company I work for has a fingerprint-
protected USB drive product (that we got
working the night before CES, it’s not just
taping out a chip that comes down to the
wire). It contains some flash memory, a
USB and hardware-encryption chip
(standard product) and a programmable
Luminary chip (now part of Texas
Instruments). The whole system requires a
fingerprint sensor and an OLED too,
which obviously can’t be integrated onto a
custom chip in any case. Of course in

volumes of hundreds of millions it would make sense to integrate
the Luminary chip (which is an ARM processor with some
standard peripherals) and the USB/encryption chip. But it will
never ship in those volumes (I can dream) so I can’t imagine that
would ever make sense. Although, as a long-term IC guy, it
upsets my sense of elegance to have two chips that clearly
“should” be integrated, it is simply cheaper to use two separate
chips. Most electronic products are like this: a handful of highly-
integrated but standard chips on a little circuit board.

 One theme that runs through this blog is that semiconductor
economics drives everything. Semiconductor is a mass-
production process that can deliver very cheap chips but only if
the “mass” in mass-production is large enough. Otherwise the
fixed costs overwhelm: the cost of design, the cost of masks and
the fab setup times. The only alternative is to aggregate end-user
systems so that the same chip is used in multiple designs. FPGAs

 67

are obviously one form of aggregation, just buy raw gates and put
them together later. The Luminary chip in the Biogy drive is
another.

 I certainly don’t claim to have all the answers as to what the big
EDA companies should do. But somebody needs to be the Mens’
Wearhouse of EDA and serve the mainstream market, even
though the unit price is lower. I guarantee it.

68

Chapter 2: Management

Three envelopes
Can there be any subject more boring than revenue recognition
for software? If you listen to the conference calls of the public
EDA companies, you’ll either hear them discuss or get asked
about how much of their business is ratable versus term. What
does this mean? Should you care? Also, what does it matter how
long the term is, isn’t longer more money and so better?

When Jack Harding was CEO of Cadence, he lost his job because
of these details. Cadence had been selling permanent licenses (for
historical reasons I’ll maybe go into at some point, EDA had a
hardware business model). The sales organization had come up
with the concept of a FAM, which stood for flexible access
model. The basic idea was great. Instead of selling a permanent
license valid forever, sell a license valid for only 3 years for not
much less. Then, three years later sell the same license again. The
lifetime of a permanent license had proved to be about 6 years in
practice, so this was almost a doubling of the amount of money
extracted per license. This was then scaled up into “buy all the
licenses you will for the next three years today”, with some
flexibility built in by throwing extra licenses into the mix. This
was done in a way that meant all the revenue, or most of it, could
be recognized up-front.

There turned out to be two problems with this once it was scaled
up. Firstly, the customers didn’t really know what licenses they
needed in year 3 although they had a pretty good idea about years
1 and 2. So to get them to go for this, the third year discount had
to be huge. The second and bigger problem was that in two years
the Cadence sales force closed three-year deals with every large
account they had. The combination of these two things mean that
every customer acquired all the licenses they needed for the next
three years, but it was all booked in two years (and for not much
more than two years’ worth of money). Numbers looked great for
two years but in year three there were no customers left. The

 69

wheels came off and the numbers cratered. Jack Harding was
CEO at the time and a couple of days after the quarterly
conference call he was gone.

There’s an old joke about a new CEO starting his first day and
being left three envelopes by the outgoing CEO. He is told to
open them when things get really bad. Things go OK for the new
CEO for the first few months and then there is a downturn in
business so he opens the first envelope. “Blame your
predecessor” is on the card inside. So he makes speeches about
how he inherited a company on the brink of ruin from the old
CEO and the analysts and press give him a break. The second
time things look bad, he opens the second envelope.
“Reorganize.” So the newish CEO takes all the business units and
carves them up into functional divisions. That seems to fix
business for a time. But eventually the future is not looking so
bright any more and the now-not-so-new CEO opens the third
envelope and read the card: “Prepare three envelopes”.

So after Jack Harding left, Ray Bingham came in, opened the
first envelope, and said Jack Harding and FAMs were bad,
Cadence would henceforth book ratable business. Depending on
details of the wording in the license, FASB (Financial
Accounting Standards Board, a bunch of academic accountants
from the east coast who’ve never run anything, but that’s another
story) forces the revenue to be recognized up front (like a FAM)
or quarterly (“ratably”) over the three years of the contract. With
ratable business almost all of a quarters revenue comes out of
backlog so it is very predictable, and there is a lot less pressure to
close business at the end of a quarter (because only 1/12 will drop
to the bottom line) which should lead to better discounting
behavior.

However, there was pressure for Wall Street for growth and one
way to provide that was to start to mix some term FAM-like
business in with all the ratable stuff, since it dropped to the
bottom line immediately. That was why smart analysts were so
focused on what percentage of business was ratable. If you don’t
know that, you have no idea if the numbers are good or bad, or if
they are sustainable.

70

[Full disclosure: Cadence acquired Ambit, where I was working,
towards the end of Jack Harding’s tenure. I then worked for
Cadence for three years including working directly for Ray
Bingham for a period. I left before Mike Fister came on board.]

Eventually the board brought in Mike Fister as CEO and Ray
became Chairman. Mike Fister hadn’t heard the joke, obviously,
since he omitted to open the first envelope. He had a perfect
opportunity to take a big loss, switch to ratable business and
generally blame anything he wanted on Ray. Instead, he kept
going on the same treadmill. To all of us observing from outside
it was clear that Mike Fister wasn’t going to make some new and
interesting mistakes, he was going to make the same old mistake
all over again. So it was no surprise when it turned out that the
rate of growth was not sustainable, that they were booking
ridiculously long-term deals of 5 or more years. The reason that
this is bad is that a 5 year deal is not a green-field deal with a
virgin customer, it is a 5 year deal with a customer who already
has a 3 year deal, and customers don’t pay much for a deal to buy
software for years 4 and 5, let alone 6, 7, 8; they are not under
any pressure. So eventually the wheels came off again. There was
even some restatement of revenue associated with, surprise,
whether some deals were correctly recognized as term or ratable.

So Mike Fister got to prepare his three envelopes and now we
know it is Lip-Bu Tan who will open them. Watch for a big reset,
blaming Mike for all the terrible deals he left behind, and lots of
talk about starting with a clean sheet.

Semiconductor is not EDA
Executives from semiconductor companies regularly arrive in
EDA companies convinced that their years of experience as
customers mean that they understand the EDA business. Software
people just need some of the discipline of semiconductor design,
which the executive has plenty of, and a miraculous
transformation will take place.

This view of the world makes the assumption that creating EDA
software is just like creating a chip. After all, designing a chip is

 71

done in Verilog, which is just a language, so how different can it
be?

On the business side, it makes the assumption that selling
software is just like selling silicon. After all, it is a technical sale,
you take an order, you ship a product, how different can it be?

A lot.

On the engineering side, a chip has a definitive event when it
tapes out. Software is never done. There are probably parts of
Design Compiler shipping today that is code written in the late
1980s. Intel’s latest microprocessor or TI’s latest GSM chip or
whatever doesn't contain stuff that old. Yes, IP blocks get reused,
but not for decades. Even IP blocks have a different dynamic. If
you need to cut a corner to get an IP block to work in your
design, then you do it and tape out. If you find a bug in some
software component then it needs to get fixed back at the
canonical source. Otherwise, since the software lasts forever,
there will forever be two versions, one containing your quick and
dirty fix and one without. The result is that in software everything
is much more inter-related than a semiconductor designer expects
a lot of is it older than expected, and as a result there is also lots
of code that works but is not well understood. Software
development is just messier, and over time it gets worse.

There is also a different tradeoff in shipping a bug. Intel’s cost to
fix the floating point bug or nVidia’s cost to fix their heating
issues are hundred million dollar or billion dollar problems.
While everyone has probably seen those tables showing that the
cost of fixing a software bug once shipped is hundreds of times
the cost of fixing it while the software is still in development, it is
simply not a million dollar problem. Only products like the space
shuttle guidance code can afford to spend astronomical(!)
amounts on testing and have a long enough schedule to
accommodate it. EDA software can’t support that on either
economical or schedule grounds. As a result, IC design really is
more disciplined and spends a large amount, upwards of 60% of
effort, on verification and almost no software can do that. When
software is released it is not a bet the company event since bugs
can be fixed.

72

The scale of software is also bigger. There may be billions of
transistors on a chip, but many of them are in regular structures
of one sort or another. No software is in regular structures or else
it would have been further abstracted to get rid of the repetition.
The number one rule in software development is to keep each
thing in only one place. Cisco’s IOS operating systems for
routers is 25,000,000 lines of code. It is probably not clean but,
by and large, there will not be a lot of duplication within it. It
really is 25M lines of unique code. Chips do not consist of 25
million lines of Verilog.

On the business side there is an interesting difference between
software and semiconductor. Firstly, semiconductor products
typically have a lead time of the order of a quarter in length. This
means that at the start of a quarter almost all the orders that will
be produced that quarter are already in. Additional inventory
might be built if there is spare capacity, in the hopes of selling it
during the quarter (known as ‘turns business’). Software really
can receive an order at 11pm on the last day of the quarter and
ship it for revenue before midnight.

However, the more interesting different dynamic is in
negotiating. When a purchasing agent negotiates with an EDA
salesperson they both know the marginal cost of the software:
zero. It really doesn’t cost any more to ship an additional copy of
a software product. Semiconductor companies make sure that
their salespeople do not know the manufacturing cost of the
product (whether their cost models are good enough that they
actually know it themselves is a different question). Marketing
gives the salesman a price and perhaps some flexibility but
neither the buyer nor the salesperson knows where the limits
really are. Negotiations can be drawn out and nasty but there is a
time aspect. If the buyer draws out the negotiations too long, they
will not get their order submitted in time to get the product built.
A software buyer knows that the biggest discount is likely as the
quarter closes, and that the software company will still make
incremental revenue no matter how big the discount.

There are probably other significant differences, but successful
semiconductor experts can easily burn their fingers in the EDA
business.

 73

Finance
Finance is an area of business that is especially poorly understood
by startup CEOs who tend to have engineering backgrounds, and
underestimate the importance of everything else: account
management, marketing and, of course, finance.

Let’s start with how EDA companies report their results. If you
listen to conference calls or read press releases you’ll hear two
sets of results. These are usually called GAAP (pronounced gap)
and non-GAAP. GAAP stands for “generally accepted
accounting principles” which actually doesn’t mean generally
accepted but means as mandated by FASB (pronounced fazz-
bee), the financial accounting standards board. This ought to be a
bunch of experienced company financial executives, or perhaps a
bunch of experienced investors. But it is actually seven
academics on the east coast who’ve never run a company, or even
been in one.

Accounting is fundamentally about cash, and if you run a small
business then you probably use cash accounting since it is the
simplest. But in a larger company it does a poor job of matching
income and expense flows together. For that you use accrual
accounting. The first change is that revenue and expense
recognition are separated from the receipt or expenditure of cash.
This matters a lot in a true manufacturing business: you ship a
customer a widget and a bill and eventually they pay. Much
better to record the money on the same day as the widget went
out since it is payment for that widget, and it is just a minor detail
that the customer didn’t pay for a few weeks. Similarly, you
receive a widget and a bill and you record the expense that day,
rather than worrying about whether you pay on 30 or 45 day
terms. The second big change is that big-ticket items are not
recorded as a single expense but are depreciated, recorded as a
series of small expenses, over the life of the item (stepper,
computer, fab). Again this does a good job of matching
expenditure to use of the money. The stepper last for several
years so it makes little sense to record a huge loss one quarter
when you buy it, and unrealistically large profits for years while
you use it. This is all pretty non-controversial although not so
important for software businesses where a lot of money is not

74

tied up in manufacturing plant, inventory, work in process and so
on. But GAAP doesn’t stop there.

The trouble is that they have got so messed up with rules for
depreciating goodwill, expensing stock options and so forth that
they no longer really give a useful view of many companies’
financial situations.

Two examples: a big EDA company buys as startup for $100M
and the startup has assets on its balance sheet of just $5M. There
are some wrinkles concerned with in-process R&D and
capitalized software development, but most of the remaining
$95M is called goodwill. It is essentially a plug number
representing the difference between the price paid and all the
tangible things anyone can find to assign to part of the purchase
price. FASB (and so GAAP) used to insist that goodwill be
depreciated over a certain period like 20 years, but now insists
that each year the company evaluates the goodwill it is carrying
on its books to see if it reflects a true assessment of the value of
the acquisition and forces adjusting entries if not. That is why, for
example, Ebay wrote down billions of dollars due to acquiring
Skype when it became clear they paid too much and so had a big
paper loss one quarter, that everyone ignored. However, changes
like this are somewhat arbitrary and generate fictional gains and
losses, not to mention assets on the balance sheet that aren’t
really assets (you can’t do anything with them like sell them).

Second example: stock options. When options are granted, which
at the time of grant has no effect whatsoever on the companies
financial position, FASB (and so GAAP) insist that an expense
be recognized. But there is no real expense in terms of money
changing hands. So of course this theoretical expense is wrong,
and later corrections will be required to bring it in line with what
actually happened. If the stock price went down, the options
might expire unexercised so it is just as if they were never issued,
and the original expense will need to be reversed. If the stock
price goes up, they will be exercised and the company will
actually gain a certain amount of money from the exercise, and
the number of shares outstanding will change. But the notional
value will need to be reversed since in the EPS (earnings per
share) calculation, option exercise affects the “per share” part and

 75

not the “earnings” part, and pretending that it did messes up all
the numbers.

Institutional investors ignore all this and focus on non-GAAP
numbers, which take all that stuff back out again. In the case of a
typical EDA company, non-GAAP numbers remove the
depreciation of goodwill from startups acquired years ago, and
also take out all the phantom value assigned to stock options. The
non-GAAP numbers are much closer to what you need to assess
how the business is doing. They are much closer to standard
accrual accounting where cash payments are adjusted to do a
better job of matching expenses and revenue to time.

For a really good summary of all that is wrong with FASB and
GAAP I recommend T.J. Rogers, the CEO of
Cypress Semiconductor, who wrote “Making financial statements
mysterious”. It’s about 10 pages long. Here’s the opening
paragraph:

I first noticed the misleading nature of Generally Accepted
Accounting Principles a few years ago when an investor called to
complain about the small amount of cash on our balance sheet.
Since we had plenty of cash, I decided to quickly quote the
correct figures from our latest financial report. But to my
surprise, I could not tell how much cash we had either. With its
usual—and almost always incorrect—claim of making financial
reporting “more transparent,” the Financial Accounting Standards
Board had made it difficult for a CEO to read his own financial
report.

Of course I’m sure I’ve got some details wrong here. But that’s
part of the point, finance is meant to summarize a business for
executives and investors who are not deep finance experts.

Two million per salesperson

76

There is a rule of thumb that all EDA executives know (or have
to learn
expensively), which
is that an EDA
company thrives if
its sales teams bring
in $2M per
salesperson. So a
medium sized
company with, say,
4 salespeople should
have a booking
forecast of around

$8M and each salespersons quota should be about $2M.

For now let’s ignore the difference between booking and revenue.
Startups don’t actually care about revenue that much, they care
about cash. And cash comes a quarter later. The typical deal
means that a startup must fund a sales team for the quarter, they
close a deal in the last week, and the company receives cash in
the middle of the following quarter. That time-lag, between the
investment in the team and collecting the cash, is one of the main
things for which series B investment money is needed. VCs have
a phrase “just add water” meaning that the product is proven, the
customer will buy at the right price. It should be a simple case of
adding more money, using it as working capital to fund a bigger
sales team and to cover the hole before the bigger sales team
produces bigger revenue and pays for itself.

Where does this $2M rule come from? A successful EDA
company should make about 20% profit and will require about
20% revenue to be spent on development. Of course it is more in
the early stage of a startup, most obviously before the product is
even brought to market but even through the first couple of years
after that. Let’s take another 20% for marketing, finance, the
CEO and so on. That leaves 40% for sales and application
engineers. The other rule of thumb is that a salesperson needs two
application engineers, either a dedicated team or a mixture of one
dedicated and one pulled from a corporate pool. If a salesperson
brings in $2M then that 40% for sales and applications amounts
to $800K, A fully loaded application engineer (salary, bonus,

 77

benefits, travel) is about $250K. A fully loaded salesperson is
about $300K (more if they blow away their quota). So the
numbers add up. If the team brings in much less than $2M, say
$1½M, then they don’t even cover the costs of the rest of the
company, let alone leave anything over for profit.

One consequence of the two million dollar rule is that it is hard to
make a company work if the product is too cheap, at least in the
early days before customers will consider large volume
purchases. To make $2M with a $50K product, if you only sell
two licenses at a time, is one order every two or three weeks. But,
in fact all the orders come at the end of the quarter meaning that
the salesperson is trying to close five deals with new customers at
the end of each quarter, which will likely be impossible.

Of course, if a salesperson is new then they won’t be able to
achieve this. They have two strikes against them. Strike one, they
don’t know the product well enough to do an effective job of
selling it. Strike two, they don’t have a funnel of potential
business as various stages of ripeness, from potential contacts,
first meetings, evaluations and so on. So when a company is
growing, hiring new people, the $2M quota is simply unrealistic.
Even more money will be needed to cover the gap between
starting to pay for a sales team until they are bringing in enough
money to fund themselves.

I’ve put together no end of business models for software
companies and the critical assumptions are always how long it
takes a new salesperson to bring in any business, how fast they
then ramp to the $2M level, and how many application engineers
they need. You then can almost read the funding requirement off
the spreadsheet.

Lady Windemere’s FAM

In Lady Windemere’s Fan Oscar Wilde wrote that a cynic is
someone who knows the price of everything but the value of
nothing. EDA companies are a bit like that. They only know the
price of their tools.

78

How much money does Synopsys make on design compiler? Or
Cadence sell of Virtuoso? The answer is that nobody really
knows. Not even Synopsys and Cadence.

Of course the finance groups of EDA companies have their way
of answering that question. They take the total number of licenses
in a deal and add up all the list prices (for the appropriate time
periods of course) and arrive at what is typically a very large
number. They then take the actual value of the deal and from
these two numbers (the deal size and the total value) arrive at a
uniform access rate. Essentially they calculate a discount from
list price assuming every tool received the same percentage
reduction.

EDA companies didn’t really plan this effect. They bundled large
portfolios of tools (Cadence called them FAMs for flexible
access model) as a way to increase market share, and for a time it
was very effective. By the late 1990s, for example, Cadence
roughly took in $400M per quarter and dropped $100M to the
bottom line. Having difficulty in doing the accounting afterwards
was just an unintended consequence.

However, the reason that this doesn’t really work is that the list
prices don’t reflect value to the customer. The customer and the
sales team don’t really look at them. They think of the deal as
delivering a certain design capability for a certain number of
engineers, for a certain sum of money. Nobody wastes any time
arguing that their Verilog simulation price is too high but they
would be prepared to pay a bit more for synthesis, when the
answer is going to be a wash in any case. That’s both the strength
and the weakness of bundling, or what is often but misleadingly
called “all you can eat.”

The biggest problem for EDA companies of this sort of
accounting is that they lose price and market signals. Cadence
didn’t realize that it was losing its Dracula franchise to Mentor’s
Calibre until it was too late, since it never showed up in the
numbers. Customers would simply refuse to pay so much for
Dracula but the number of licenses in the deal wouldn’t actually
get adjusted, so the allocation of the portion of the deal to
Dracula hid what was going on.

 79

During the heyday of Synopsys’s Design Compiler in the late
1990s, it was hard for them to know how much revenue to
allocate to other products in the deal that might have been riding
on its coattails. That’s without even considering the fact that
Synopsys would want to spread the revenue out as much as
possible to look less like a one-product company to both
customers and investors.

This problem is not unique to EDA. I talked to a VP from Oracle
that I happened to meet and he told me that they have the same
issue. Without getting signals from the market it is very hard to
know where they should invest engineering resources. EDA has it
slightly easier here since the march of process nodes guides at
least some of the investment toward areas that everyone knows
are going to become important. Technology as well as price
determines the roadmap.

EDA companies fly somewhat blind as a result of all of this. If in
every deal Verilog simulation is priced too high, and synthesis is
priced too low, then this has implications for how much
investment should go into synthesis versus simulation. But if
nobody bothers to adjust them in each deal so that the price
discrepancy eventually finds its way into the aggregate numbers,
then investment will be misallocated. This is good neither for the
EDA company nor for the customer, since both benefit from
investment being in the places that the customer cares most
about, as evidenced by their willingness to pay more for it.

Twelve-o-clock high
Three or four times in my life I’ve been given divisions or
companies to run that have not been performing. Although it
seems like an opportunity like that would be a poisoned chalice,
it was actually a no-lose situation. If things went badly then I was
drafted in too late. If things went well then I would be credited
with the improvement. When expectations are so low it is not that
hard to exceed them. Which is not at all the same thing as saying
that improvement or success are easy.

When overnight I found myself as CEO of Compass Design
Automation, one of my staff gave me the movie Twelve o’clock

80

high in which Gregory Peck takes over a bomber squadron during
the second world war and turns it around. The previous
commander had become too close to his men to be effective as a
commander. It won some Oscars and still worth watching today.

It is a lot easier to make the changes to an organization as a
newly-drafted boss than it is to makes those changes if you were
the person responsible for the early decisions. Everyone is human
and we don’t like admitting that we made a mistake. We get
emotionally attached to our decisions, especially to parts of the
business that we rose up through or created. Nobody wants to kill
their own baby. If you’ve ever fired someone that you hired or
promoted, you probably discovered everyone around you
thought, “what took you so long?” Reversing decisions that you
made yourself tends to be like that.

As a newly drafted boss, morale will usually improve
automatically just as a result of the change. Everyone knows lots
of things that need to be changed and that were unlikely to be
changed under the previous regime. It is a bit like the old joke
about a consultant telling a manager something he already knows
so that he can go ahead and do it. Just making some of those
obvious changes fast creates a “things are going to be different”
mentality.

The best example I know of the difficulty of reversing deeply
ingrained decisions (without changing the leader) is in Andy
Grove’s book Only the paranoid survive. If you are less than a
certain age you probably are unaware that Intel was a memory
company, initially very successfully and then struggling against
Japanese competition. Intel meant memories then in the same
way as it means microprocessors today. Here’s the scene. Andy
Grove and Gordon Moore are in his office in 1985 discussing an
upcoming board meeting. The business is going very badly:

I turned to Gordon and asked, “If we got kicked out and
the board brought in a new CEO what do you think he
would do?” Gordon answered without hesitation, “He
would get us out of memories.” I stared at him numb then
said “Why shouldn’t you and I walk out the door, come
back and do it ourselves?”

 81

It was an extraordinarily brave decision, and laid the ground for
what Intel has become today. Usually that type of wrenching
change does require a new CEO who has no emotional
attachment to the earlier decisions.

At the end of Twelve o’clock high the Gregory Peck character is
removed from command. He identifies too closely with his men
to be effective as a commander. Time for a new commander.

Startups and big companies: your
end of the boat is sinking
I’ve worked at startups and I’ve worked at larger companies. I
even worked at one company, VLSI Technology, where I joined
it when it was a pre-IPO startup and left when it was thousands of
people in tens of buildings. What is the difference? I think that
the difference is best summed up in the jokey phrase “your end of
the boat is sinking.”

People talk about the “risk” of joining a startup, but the main risk,
unless you are vice-president level or you are joining before the
company is funded, is simply that you’ll waste your time. You
get paid pretty much the going rate for an engineer or a product
marketing person or whatever you do. And you have some stock
that will be worth a significant capital gain if the company is
successful or nothing otherwise. If you are an executive, you get
paid a lot less than the going rate in a big company. On the other
hand, you have a lot of stock, 1-3% of the company for a vice-
president, more for a hired-in CEO. Founders may have more
than this depending on how much financing they end up needing
to bring in. So for the senior people they really are losing
something more than just time working for a startup.

Startups have two different dynamics from larger companies. The
first is simply that they employ fewer people, pretty much by
definition. Secondly, everyone’s personal and financial success,
especially the management, is bound up in the success or
otherwise of the company.

82

Employing fewer people means that in a startup there is nowhere
to hide. Everyone knows everyone else and it is clear who is
performing and who, if anyone, is trying to free-ride on everyone
else’s efforts. In an environment like that, everyone is under
pressure to perform. A startup can’t afford much headcount and if
you are not going to perform at a high level, or for some other
reason are not a good match, then it is best for the startup to find
someone else who will.

The second dynamic, that everyone’s success is bound up with
the company’s success, means that people naturally are working
towards the same goal. Startups often struggle as to what that
goal should be, and different management teams do more or less
well at communicating it, but it is not necessary on a daily basis
to micromanage everyone’s priorities. The natural DNA of a
company that makes it operate in a particular way, which can be
such a weakness in an Innovator’s Dilemma situation, is a benefit
here. If you don’t tell people what to do there is a good chance
they’ll do what they should do anyway.

In a larger company, your success as an individual (unless you
are in senior management) comes largely from doing what your
boss expects you to do. This may or may not have something
directly to do with the success of the company, but it is not your
job to second-guess that. If you want a salary increase and
promotion you must work within the system.

So in a startup you don’t get “your end of the boat is sinking”
behavior where people do what is good for their workgroup
(division, site, product) at the expense of the good of the
company. In a startup, where the boat is much smaller, everyone
sees that the boat either floats or sinks and everyone is in it
together. As a result, I find working in a startup is more fun than
working in a larger company, at least unless you get senior
enough to affect the large company strategy.

Ready for liftoff
I talked earlier about how it seems to take $6M to build a channel
in EDA once you get to the “just add water” stage where all you
need to do is to ramp up a salesforce and distribution. However,

 83

typically you are not really ready for this when you first think
you are. More EDA (and other) companies are killed by
premature scaling than anything else. Ramping up a channel is
very expensive and will burn a lot of money very fast for little
return if the product is not ready, either killing the company
completely or requiring an additional unexpected round of
funding at an unimpressive valuation, diluting everyone’s stock
significantly.

When to scale is the most difficult decision a startup CEO faces.
Too early and the company dies due to lack of financial runway.
Too late and the company risks either missing the market window
or losing out to competition during the land-grab phase of a new
market.

There are two ways the product can be “not ready,” and there will
usually be a mixture of the two. The first, and most obvious, is
that the first release won’t include every feature that every user
requires and so isn’t ready to serve the entire market. This is
probably even known and acknowledged; it’s not as if
engineering doesn’t have a long list of stuff for version 2.

The more dangerous way the product is “not ready” is that you
are not completely sure precisely which is the most important
problem that it solves for the user, and which subsets of users
will value this the most. Value it enough to consider engaging
with you, an unproven startup with an immature buggy first
release. For instance, you might have a product that you think
serves the entire market, everyone will need one, you can’t do
45nm designs without it. In fact, if you are just starting to engage
with real customers, you might never have run a real 45nm
design through your product, just doubled up 65nm designs and
switched the library or something. It is often easier to get great
results on those older designs. For example, in the last company
where I worked, Envis, we got great power reduction results on
130nm designs, and public domain cores that had been around for
even longer. After all, nobody cared that much about power back
then so they didn’t put much effort into designing to keep power
under control. When we tried our tool on 90nm and 65nm
designs, the results were initially less impressive. Designers had

84

already done many obvious things by hand meaning that we had
to work harder to produce compelling incremental savings.

The reality is that your initial product certainly doesn’t serve the
whole market. If it does, you should have gone to market earlier
with a less complete product. Worse, the precise feature set you
have implemented might not serve any submarket completely
either. But you need to have a product that serves at least some of
the market 100%, even at the cost of being useless to a large part
of the market, as compared to a solution that is 90% for everyone.
At least in the first case there is at least one customer who might
buy the tool; in the second case, nobody is going to buy the tool,
everyone is going to wait for you to add the remaining 10%. A
different 10%, perhaps, for every customer.

It is a fallacy to think that taking a product to market is a linear
process. Do the engineering, prepare sales collateral, start selling.
Taking a product to market is more of an iterative exploratory
process. There is a phrase, “throwing mud against the wall to see
what sticks” that sounds derogatory. But, in fact, the early stage
of going to market should be like that. In the best of all worlds
you’ll have had one or two customer partners since the early
stages of development, helping you spec the product and helping
guide the early parts of development. But it doesn’t always work
out that way. Sometimes you don’t have early partners, or your
champion leaves, or sometimes those early partners turn out to be
atypical in some important way, so that you are forced to choose
between satisfying their unique requirements and developing
features with wider applicability.

That leaves you with a product that you have to explore how to
take to market, and to explore which if the many aspects of the
product you should emphasize in your positioning. This is the
City Slickers marketing problem, discovering the one thing that
your customers value enough to buy the product and focusing
your marketing and engineering on making that value proposition
strong before worrying about other aspects of the product that
might broaden the appeal to a larger segment of the whole
market.

 85

Customer support
Customer support in an EDA company goes through three
phases, each of which actually provides poorer support than the
previous phase (as seen by the long-term customer who has been
there since the beginning) but which is at least scalable to the
number of new customers. I think it is obvious that every
designer at a Synopsys customer who has a problem with Design
Compiler can’t simply call a developer directly, even though that
would provide the best support.

There is actually a zeroth phase, which is when the company
doesn’t have any customers. As a result, it doesn’t need to
provide any support. It is really important for engineering
management to realize that this is actually happening. Any
engineering organization that hasn’t been through it before is
completely unaware of what is going to hit them once the
immature product gets into the hands of the first real customers
who attempt to do some real work with it. They don’t realize that
new development is about to grind to a complete halt for an
extended period. “God built the world in six days and could rest
on the seventh because he had no installed base.”

The first phase of customer support is to do it out of engineering.
The bugs being discovered will often be so fundamental that it is
hard for the customer to continue to test the product until they are
fixed, so they must be fixed fast and new releases got to the
customer every day or two at most. By fundamental I mean that
the customer library data cannot be read, or the coding style is
different from anything seen during development and brings the
parser or the database to its knees. Adding other people between
the customer engineer and the development engineer just reduces
the speed of the cycle of finding a problem and fixing it, which
means that it reduces the rate at which the product matures.

Eventually the product is mature enough for sales to start to ramp
up the number of customers. Mature both in the sense that sales
have a chance of selling it and the company has a chance of
supporting it. It is no longer possible to support customers
directly out of engineering. Best case, no engineering other than
customer support would get done. Worst case, there wouldn’t

86

even be enough bandwidth in engineering to do all the support.
Engineering needs to focus on its part of the problem, fixing bugs
in the code, and somebody else needs to handle creating test
cases, seeing if bugs are fixed, getting releases to the customer
and so on. That is the job of the application engineers.

During this second phase, a customer’s primary support contact is
the application engineer who they work with anyway on a regular
basis. But as the company scales further, each application
engineer ends up covering too many customers to do anything
other than support them. Since their primary function is to help
sales close new business, this is a problem. Also, AEs are not
available 24 hours per day which can start to be a problem as real
designs with real schedules enter crunch periods. So the third
phase of customer support is to add a hotline.

The hotline staff are typically not tool users, they are more akin
to 911 dispatchers. Customers hate them since they are not as
knowledgeable as they are themselves. Their job is to manage the
support process, ensure that the problem is recorded, ensure that
it eventually gets fixed, and that the fix gets back to the customer
and so on. It is not to fix anything except the most trivial of
problems themselves.

However, it turns out that one problem the hotline can do a lot to
help with, and that is problems with licenses, license keys and the
license manager. In every EDA company I’ve been involved with
this has represented almost half of all support calls. EDA product
lines are very complex and as a result there are a lot of calls about
licenses that don't require the intervention of engineering to get
fixed.

At each phase of support, the quality (and knowledge) of the
engineer directly interfacing to the customer goes down but the
bandwidth of available support increases. Engineering can only
directly support a handful of customers themselves. Each AE can
only directly support a handful of customers but more AEs can
easily be added as sales increase. A hotline can scale to support a
huge number of customers 24 hours per day, and it is easy to add
more hotline engineers. The hotline can also be located in an area
where it is cheaper to staff, since it doesn’t need to be in Silicon
Valley.

 87

This isn’t specifically an EDA problem. I’m sure we’ve all had
experience of calling customer support for Comcast or our
wireless router, and been told to do all the things we’ve already
tried. It’s frustrating, but it’s also obvious that they can’t simply
put us through to the guy who wrote the code in the cable modem
or our router.

Test cases
I talked recently about customer support and how to handle it.
One critical aspect of this is the internal process by which bugs
get submitted. The reality is that if an ill-defined bug comes in,
nobody wants to take the time to isolate it. The AEs want to be
out selling and that if they just throw it over the wall to
engineering then it will be their job to sort it out. Engineering
feels that any bug that can’t easily be reproduced is not their
problem to fix. If this gets out of hand then the bug languishes,
the customer suffers and, eventually, the company too. As the
slogan correctly points out, “Quality is everyone’s job.”

The best rule for this that I’ve ever come across was created by
Paul Gill when we were at Ambit. To report a bug, an application
engineer must provide a self-checking test case, or else
engineering won’t consider it. No exceptions. And he was then
obstinate enough to enforce the “no exceptions” rule.

This provides a clear separation between the AE’s job and the
development engineers job. The AE must provide a test case that
illustrates the issue. Engineering must correct the code so that it
is fixed. Plus, when all that activity is over, there is a test case to
go in the regression suite.

Today, most tools are scripted with TCL, Python or Perl. A self-
checking test case is a script that runs on some test data and gives
a pass/fail test as to whether the bug exists. Obviously, when the
bug is submitted the test case will fail (or it wouldn’t be a bug).
When engineering has fixed it, then it will pass. The test case can
then be added to the regression suite and it should stay fixed. If it
fails again, then the bug has been re-introduced (or another bug
with similar symptoms has been created).

88

There are a few areas where this approach won’t really work.
Most obviously are graphics problems: the screen doesn’t refresh
correctly, for example. It is hard to build a self-checking test case
since it is too hard to determine whether what is on the screen is
correct. However, there are also things which are on the
borderline between bugs and quality of results issues: this
example got a lot worse in the last release. It is easy to build the
test case but what should be the limit. EDA tools are not
algorithmically perfect so it is not clear how much worse should
be acceptable if an algorithmic tweak makes most designs better.
But it turns out that for an EDA tool, most bugs are in the major
algorithms under control of the scripting infrastructure and it is
straightforward to build a self-checking test case.

So when a customer reports a bug, the AE needs to take some of
the customer’s test data (and often they are not allowed to ship
out the whole design for confidentiality reasons) and create a test
case, preferably small and simple, that exhibits the problem.
Engineering can then fix it. No test case, no fix.

If a customer cannot provide data to exhibit the problem (the
NSA is particularly bad at this!) then the problem remains
between the AE and the customer. Engineering can’t fix a
problem that they can’t identify.

With good test infrastructure, all the test cases can be run
regularly, and since they report whether they pass or fail it is easy
to build a list of all the failing test cases. Once a bug has been
fixed, it is easy to add its test case to the suite and it will
automatically be run each time the regression suite is run.

That brings up another aspect of test infrastructure. There must
be enough hardware available to run the regression suite in
reasonable time. A large regression suite with no way to run it
frequently is little use. We were lucky at Ambit that we
persuaded the company to invest in 40 Sun servers and 20 HP
servers just for running the test suites

A lot of this is fairly standard these days in open-source and other
large software projects. But somehow it still isn't standard in
EDA which tends to provide productivity tools for designers,
without using state of the art productivity tools themselves.

 89

On a related point, the engineering organization needs to have at
least one very large machine too. Otherwise inevitably customers
will run into problems with very large designs where there is no
hardware internally to even attempt to reproduce the problem.
This is less of an issue today when hardware is cheap than it used
to be when a large machine was costly. It is easy to forget that ten
years ago, it cost a lot of money to have a server with 8 gigabytes
of memory; few hard disks were even that big back then.

And with perfect timing, here's yesterday's XKCD on test-cases:

Strategic errors
In the time I was at VLSI, we made a couple of strategic errors
relating to EDA. It is perhaps unfair to characterize them this way
since it is only with hindsight that the view is clear.

First a bit of history. VLSI was created in the early 1980s to do
what came to be called ASIC designs. To do that we had internal
tools and they made VLSI pretty successful, first in ASIC and
later standard product lines for PC chipsets and GSM phones.
VLSI was a pre-IPO startup when I joined and it grew to a
$600M company that was eventually acquired by Philips
Semiconductors (now called NXP) in a $1B hostile takeover. In
1991 VLSI spun out its internal software as a new company,
Compass Design Automation, which never really achieved
success. It grew to nearly $60M and eventually (by then I was
CEO of Compass) was sold to Avant! for about $90M depending
on how you count in 1997.

90

But let’s go back a bit. In the mid 1980s, VLSI had a major
problem. It didn’t have enough money. It didn’t have enough
money to build a 1um fab, and it didn’t have enough money to
fund TD (technology development, meaning development of the
semiconductor process itself) for a state-of-the-art 1um process.
So they did major strategic deals with Hitachi and Philips
Semiconductors that brought in process technology, patent
licenses and money. This meant that VLSI was in business in
1um as a semiconductor company with a new fab in San Antonio
and the Hitachi 1um process up and running there.

The really clever decision would have been to foresee that the
profitable part of the business was going to be EDA, and VLSI
was one of the leaders, if not the leader, at that time. If they
forgot about all this fab stuff, they wouldn’t need the money, they
wouldn’t need the process, and they could be a very profitable
software company. They could have been Cadence, which was
just starting to get going at the time. The trouble was that they
had semiconductor management whose deep operational
experience of running fabs would have been pretty useless for
running a software company.

In effect, this would have been spinning out the Design
Technology group from VLSI to become Compass, and leaving
VLSI as a semiconductor company to die or become an early
version of an eSilicon type of fabless ASIC company (since it
would have limited money, no process and no fab). But, in any
case, eventually it became really obvious that combining a
semiconductor company and an EDA company was not a good
idea and it was time to split into two viable companies.

The second strategic error was waiting too late to do this. By
1991 when VLSI did it, their technology was no longer way out
ahead of the competition, and the industry was not yet looking for
the integrated solutions that Compass had (since it had not grown
by acquisition). This meant that Compass always struggled to
both acquire customers and to acquire library support from other
semiconductor companies. This would have been helped if VLSI
had sold part of Compass to a VC or someone independent, since
there would have been at least part of the ownership of the
company that didn’t care about VLSI and only cared about the

 91

value of the Compass stock. That would act as a guarantee of
independent arm-length behavior by VLSI, which wasn’t there
when VLSI owned 100% of Compass (which it did until it was
sold to Avant! in 1997). When LSI wanted to license our datapath
technology, it was apparently vetoed by Wilf Corrigan because, if
Compass’s resources got tight, VLSI would get them and LSI
would not.

Interestingly, a couple of years earlier in 1988 Daisy had made a
hostile bid for Cadnetix, and had merged the companies to create
Daisix. For a number of reasons, this never worked and
eventually in 1990 they filed for bankruptcy. VLSI turned out to
be owed a lot of money by Daisix (or one of its parents, I don't
remember the details). Daisix was offered in settlement of the
debt, but VLSI wasn't interested and it went to Intergraph instead.
If they had taken Daisix, up and running as an EDA company
with huge breadth of 3rd party library support, and merged it with
Compass’s technology then there was certainly the possibility for
Compass hitting the ground running, rather than struggling to
earn library party support from other vendors which eventually
limited their market largely to people licensing Compass’s
libraries.

Emotional engineers
People sometimes say that salespeople are emotional, unlike
engineers. I think what they mean is that salespeople are
(stereotypically) extrovert so if you mess with them they’ll make
a noise about it. Whereas engineers are introvert and will just
brood (“How can you tell if an engineer is extrovert? He stares at
your shoes”). But actually salespeople are coin-operated. Change
their commission plans and they’ll cancel everything they were
doing and do something else. They’ll complain loudly but they’ll
do it. Engineers are much more emotional and have a lot
invested in their products. Cancel their product and it takes a long
time for them to become productive again. Unlike sales, they
won’t complain but they won’t do it. They’ll waste a lot of time
talking amongst themselves about how management
shortsightedly delayed the salvation of mankind instead.

92

Every EDA startup, at least the ones that get that far, goes
through a difficult emotional transition with engineering when
the first product finally starts to ship.

In the early days of a startup, almost the entire company (maybe
everyone other than the CEO) is in engineering. The focus of
every review meeting is engineering schedules. The focus of any
HR activity is hiring that next great engineer. Everyone is waiting
for that first release of the product. Every small slip of the
product, every minor change of specification, is minutely
analyzed.

Finally the big day arrives and the focus of the company switches
very quickly to sales. How is the funnel? What is the booking
forecast? How are we doing hiring that critical application
engineer? How long to cash-flow neutral? To the extent that
management pays attention to engineering it is more focused on
when showstopper bugs that are impacting sales will be fixed.
Nobody seems to care nearly as much about release 2.0 as they
did about release 1.0.

Anyone who has more than one child has seen something similar.
Their first child is an only child, the center of their parents’
attention. Until that second baby arrives and suddenly they are no
longer the center of attention. Firstly, there are now two children
so attention would naturally be halved. But secondly, babies have
an extremely effective strategy for getting all the attention they
need: make an unpleasant noise and don’t stop until their needs
are satisfied.

When sales start, engineering is like the first child. They go from
having all the attention to having to share it. And to make it
worse, the second child, sales, has a very effective strategy for
getting all the attention they need: explain the reasons they are
not closing business until their needs are satisfied. To make
things worse still, the reason they are not closing business is
probably related to deficiencies in the early immature product,
which means that what little attention engineering does get is
negative.

This is a very tough emotional transition. Engineering is on the
start of a path from being almost 100% of the company declining

 93

to 20% of the company as it moves towards maturity.
Engineering will hold headcount relatively flat as other parts of
the company seem to explode. Engineering goes from being the
star of the show to a supporting role.

The most important thing to do about handling this is to make
sure everyone understands that it is going to happen, like telling
your 4 year-old about the new baby. And, what is more, make
sure everyone realizes that it is a symptom of success, a rite of
passage. When all that anyone cares about is engineering, it
means that the company isn’t selling anything. When
management cares about other things, that's the first taste of
victory. It’s engineering’s job to get out of glare of attention as
quickly as they can, and let sales start taking the heat.

After all, how much fun was it when the CEO was analyzing
engineering’s embarrassingly inaccurate schedules in great detail.
Every day.

CEO: a dangerous job
Why do so few startup CEOs last the distance? The Bill Gates,
Michale Dell and Scott McNealys who take their companies all
the way from the early days as a tiny startup all the way up to
enormous multi-division companies are very exceptional. I think
that it is obvious that running a little engineering organization
developing a technical product requires very different skills from
running a large company. Engineering skills dominate in the first;
people and strategic management skills dominate in the second.
A CEO has to grow a lot along with the organization to be
successful at each stage of the company’s growth.

What is less obvious is that the skills getting a company going are
very different from running it once the engineering phase is
drawing to a close, or in some case just getting started. I’ve read
various statistics, but something like 75-80% of startup CEOs are
replaced before their company gets acquired (or merges, or goes
public etc).

Getting a company started, and raising the first money to fund it,
requires a level of focus and obsession that is abnormal. The

94

“doing whatever it takes” attitude is necessary in those very early
days, but it tends to leave a trail of turds to be sorted out later.
Further, some people like this have difficulty making the
transition to being a team-player once the key hires have been
made. Nothing will alienate high-performers more than trying
micromanage them, or treating them without integrity, or
generally not regarding them as close to equals. A startup is more
like a jazz-band than a military organization. It is interesting that
the highest performing small-scale parts of the military, Navy
SEALs or the British SAS, abandon a lot of the military trappings
(SAS officers famously are often called by their first names).

I’ve been in several startups where I’ve come in later, well after
founding, and had to sort out problems that are left over from
getting the company founded. Complete inequities in salary or,
especially, stock seem to be the natural debris of getting people
out of their current organization and into startups. But not getting
them into the company is probably a worse problem.

There are no hard divisions between different stages in the life-
cycle of a startup, but roughly speaking there are four. Getting
the company founded along with the other initial founders;
getting the engineering development solidly under way with a
competent team; getting initial sales and starting to ramp up a
channel; growth to a more mature organization with an industry
standard breakdown of headcount. There is a fifth (and probably
more) stages as it become more and more difficult to manage
larger organizations. The largest organization I’ve run had about
600 people, and that is like sailing a supertanker. You think you
spin the wheel but nothing happens.

At each of those four stages, the CEO may or may not make the
transition. VCs are famously ruthless if they think that the CEO is
not the best person to look after their investment. The old CEO,
no matter how important he or she was in earlier days, is off to
“spend some more time with their family” and a new person is at
the helm overnight.

The most dangerous phase for many CEOs is the transition from
engineering to starting to ship the product. Founding CEOs are
often very technical, effectively the primary architect of the
product. Like many engineers, they overestimate the importance

 95

of technology and they underestimate the importance of
marketing and account management. By their nature as founders,
they may be much better at driving over objections than at
listening. So they fail at the business side since they are out of
their natural comfort-zone and they compound the problem
because they won’t listen to people who know what they are
doing wrong. This happens so often that VCs see it coming from
afar and don’t even wait to see if the CEO can handle it before
hitting the eject button. They knew when they founded the
company that they would change the CEO. Sometimes they even
make it a condition of funding, to make the process less traumatic
when it happens.

Channel choices
Should a separate product be sold through a separate channel? If
a new product is pretty much more of the same then the answer is
obviously “no.” If the new product is disruptive, sold to a
different customer base, or requires different knowledge to sell
then the answer is less clear. There seem to be several main
inputs into the decision. Cost, reach, conflict, transition and
disruption.

First, cost. Each channel costs money. Obviously a separate
direct sales force, as Cadence once had for the Alta Group (its
system level tools), is expensive. Less obviously, even a
distributor or reseller has cost too: upfront cost in training them
and ongoing cost in supporting them and in the portion of each
sale that they retain. At the very least the separate channel needs
to be more productive than it would be to simply sell through the
existing channel. By productive, I mean delivering more margin
dollars. Sales might be higher with the separate channel, but sales
costs might be even higher still making it unattractive. That is
one reason that typically when an acquisition is made, the sales
force from the acquired company is folded into the sales force for
the acquiring company (usually with some of the lower
performers being surplus to requirements) rather than being
ramped up aggressively as a separate channel.

96

The second issue is reach. The existing sales force sells to certain
customers, and in fact to certain groups within those customers. It
will be hard for an existing sales force to sell a new product if it
has different customers or even completely different groups
within those customers. Their “rolodex” (or CRM system) isn’t
any use. They are not already on the right aircraft, they are not
already going to the right meetings. In this case, that militates for
having a separate channel.

The third issue is conflict. So-called “channel conflict” occurs
when a customer might be able to purchase the same product
through more than one channel, specifically more than one type
of channel, such as direct from the company or via some sort of
reseller. This has impact on pricing in a way that might have
downsides. For example, go up to Napa Valley and visit a
winery. For sure, the winery will be very happy to sell you a few
bottles of wine. Since they don’t have any middlemen and have a
huge amount of inventory (they don’t just have the few bottles in
the store, they have hundreds of barrels of the stuff in the back)
then surely they will sell you the wine for less than anyone else.
But, in general, they will sell you the wine for the highest price
anywhere. If they sold it for less, they would make more money
at the winery but they would risk having distributors and
restaurants refuse to carry it. In EDA, if there is a product
available through distribution and direct, then the direct channel
cannot routinely undercut the distribution or the distributor will
soon stop actively selling.

The fourth reason to have a separate channel is when the market
demands, or the company decides, that it must transition its sales
from one channel to another. Maybe they decide to move from
direct sales to only doing telesales or only taking online orders.
Or perhaps they decide that the day of a standalone product has
gone, and they will only be able to sell integrated with a partner
going forward. The channel must switch from however they sold
before, to simply relying on the partner to sell their product and
getting their share of those sales (and, presumably, enlarging
their partners market in some way or else the partner wouldn’t be
interested). I’ve talked before about how in EDA OEMs only
work when the product is actually a component, since otherwise
the customer will always want a direct relationship with the real

 97

seller. But if you do have a component, rather than a product, you
must sell through an OEM type of license (as do companies like
Verific or Concept Engineering).

Finally, disruption. If you have a product that is disruptive you
have to have a separate channel. Disruptive, in the Innovator’s
Dilemma sense, means (usually) that it is sold at a low price point
to people who are not served by existing products, and where the
low price point product is expected to improve fast and gradually
swallow most of the market. Think early PCs versus
minicomputers or teeth-whitening strips versus dentist’s
providing whitening service. The existing channel is threatened
by the disruptive technology, may not even be able to cover its
channel cost (think of your dentist selling you teeth whitening
strips you could just pick up in Longs) and will be unenthusiastic
about selling it compared to more profitable lines. If you are
going to be brave enough to try and kill your own baby, then you
need separate organization for the baby and the killers.
Sometimes, moreover, the disruption is the channel itself
(Amazon and bn.com or, for a historical example, Sears starting
to sell by catalog as well as department stores). This means a new
channel by definition.

EDA has rarely had a separate sales force, since it is just too
expensive. One that I mentioned above was Cadence’s Alta
Group. For a period that had its own sales team and was
successfully growing revenue. But it was expensive and Cadence
decided to fold it back into the main sales force. Sales declined
and Cadence ended up “selling” that part of the business to
CoWare (which you can regard as one way of going back to a
separate channel).

You comp plan is showing
I talked recently about setting up separate channels and when it
made sense to do it, and about some aspects of channel conflict.
One area where separate channels are usually required is when a
business is global. Most EDA products, even from quite small
companies, have business in Japan, Taiwan, Korea and Europe as
well as the US. Most of these cannot be serviced with a direct

98

sales organization until the company is pretty sizeable and maybe
not even then. But customers don’t always view the world the
way your sales compensation structure does. It is really important
not to let the way you structure and compensate your internal
organisations, especially sales, show through and limit how
customers can do business with you.

When I was at VLSI Technology, we wanted to standardize on a
single Verilog simulator and we had decided that it would be
ModelSim. So we wanted to negotiate a deal for using ModelSim
throughout the company. At the time, Mentor had already
acquired ModelSim but it was still sold partially through the old
ModelSim channels, which were distributors and VARs (value-
added-resellers). I don’t think ModelSim ever had any direct
sales force. We met with our Mentor account manager.

Mentor basically refused to do any sort of global deal because
they felt unable to go around their distributors in each region; we
would have to do a separate deal with each region. Also, licenses
sold in one region would not be usable in other regions since the
distributor/VARs provided first line support. The US alone was
several different regions so this wasn’t very attractive.

Part of the reason for doing a global deal was that we could get
better pricing, we thought, since Mentor’s costs would also be
lower if we wrote one contract for a large amount, as opposed to
negotiating lots of smaller contracts with each region. We also
didn’t want to have to worry about where a license was used, we
wanted a certain amount of simulation capacity for a certain
number of dollars. Internally we didn't even track where tools
were used. There is always some issues about using licenses in
regions other than the one where they were sold. Firstly, the
salespeople get annoyed if someone in region A sells a lot of
software that is largely used in region B, especially when the
salespeople for region B starts to get lots of calls from “their”
customer. Even if the customer promises that all support will go
through region A, this usually doesn’t stick, especially once
different languages are involved. It is just not credible that all
Japanese customers will be supported through, say, Dallas,
whatever the software license says.

 99

It can be a major problem when the internal scaffolding of the
sales organization shows through to customers like that. “I can’t
sell you that because I won’t get any commission” is not a very
customer-focused response. You get the same problem, on a
smaller scale, in many restaurants if you ask someone who is not
your waiter for another glass of wine. The server won’t ignore
you totally but they won’t bring the wine either, just tell your
server if they remember.

Whenever possible, you want your channel to look as unified as
possible to the customer, no matter what battles are going on
internally. Like a swan, serene on top and paddling like hell
underneath.

At the other extreme, my girlfriend works for a medical
education company. It’s largely grown by acquisition but has the
(to me insane) strategy of keeping each company’s sales force
and branding intact. So any given hospital may have half-a-dozen
people calling on it, selling them different products under
different brand names, but from the same company. The financial
inefficiency of doing this is huge, and as more and more of their
business moves into the electronic space and is integrated into
electronic medical record systems, more and more of their
business will be through indirect channels in any case. But they
don’t see this as either inevitable nor a good thing (since it is less
profitable) and worry a lot about channels that conflict with their
own salespeople. Some of their competitors have bitten the
bullet, got rid of their direct sales force and only sell indirectly.
Lower costs, one brand name, and no channel conflict. The straps
of their compensation scheme aren't showing.

As for VLSI and ModelSim, we ended up doing a deal with
another company, Cadence I think. It's not just a minor
inconvenience to let your sales compensation drive the business.
It can drive it away.

Board games
I talked earlier about changing the CEO in startups. The board in
any company really has two main functions. One is to advise the
CEO since the board often has complementary experience. For

100

example, older venture capital investors have probably seen
before something very similar to any problem that may come up,
or board members with industry experience may have a more
“realistic” view on how taking a product to market is likely to
turn out than the spreadsheets describing the company’s business
plan.

The second, and most important, job of the board is to decide
when and whether to change the CEO. In one way of looking at
things, this is really the only function of the board. The CEO can
get advice from anywhere, not just the board. But only the board
can decide that the company leadership needs to change. It is the
rare CEO that falls on his own sword, and even then it is the
board that decides who the new CEO is going to be.

Usually there is some controversy that brings a crisis to a head.
The CEO wants to do one thing. There is some camp, perhaps in
the company, or perhaps outside observers, or perhaps on the
board itself, that thinks that something else should be done. The
issues may be horribly complicated. But in the end the board has
a binary choice. It can either support the CEO 100%, or it can
change the CEO. It can’t half-heartedly support the CEO (“go
ahead, but we don’t think you should do it”). It can’t vote against
the CEO on important issues (“let’s vote down making that
investment you proposed as essential for the future”).

I was involved in one board level fight. I was about to be fired as
a vice-president even though the board supported my view of
what the company needed to do and told me that they wouldn’t
let the CEO fire me. But in the end, they only had those two
choices: support the CEO, or fire the CEO. The third choice,
don’t fire the CEO but don’t let him fire me, didn’t actually exist.
So I was gone. And the new CEO search started that day and the
old CEO was gone within the year.

Boards don’t always get things right, of course. I don’t know all
the details, but there is certainly one view of the Carly Fiorina to
Mark Hurd transition at H-P that Carly was right, and Mark has
managed to look good since all he had to do was manage with a
light hand on the wheel as Carly’s difficult decisions (in
particular the Compaq merger) started to bear fruit. If she had
been allowed to stay, she’d have got the glory in this view.

 101

Almost certainly, Yahoo’s board got things wrong with the
Microsoft acquisition offer. Jerry Yang wanted (and did) refuse
it. The board supported him. Their only other choice was to find a
new CEO, which they eventually did.

When Apple’s board fired Gil Amelio and brought Steve Jobs
back, hindsight has shown that it was a brilliant decision. But in
fact it was extraordinarily risky. There are very few second acts
in business, where CEOs have left a company (and remember, an
earlier Apple board had stripped Steve Jobs of all operational
responsibility effectively driving him out of the company) and
then returned to run them successfully later. Much more common
is the situation at Dell or Starbucks, where the CEO returns when
the company is struggling and the company continues to struggle.

Hiring and firing in startups
Startups have unique problems in human resources. For a start,
they don’t have human resource departments or even, in the
earliest days, anyone to even do the mechanical stuff of making
sure the right forms are filled out. You have to do that yourself.

There’s some obvious stuff that is unlikely to trip anyone up:
people need to have a legal right to work at the company,
meaning be US citizens or permanent residents. In the earliest
days you are not likely to want to have to go through the visa
application process so that is probably the end of the list of
people you’d want to bring on board. One exception might be
someone who has an H-1 (or other appropriate) visa already; it is
fairly straightforward to reassign it to a new company and doesn’t
run into any quota issues and only takes a few weeks.

One thing that is incredibly important is to make sure to create a
standard confidentiality disclosure agreement and make sure that,
without fail, every employee signs it. This binds the employees to
keep company confidential information confidential (and
survives their quitting), and also assigns to the company
copyright and patent rights in the code (or whatever) they create.
If an employee leaves to go to a competitor, that is not the
moment to discover that the employee never signed his or her

102

employment agreement and that it is legally murky what rights
they have to ideas they came up with on your watch.

But the most difficult challenge is building the right team. This is
probably not a problem with the first handful of hires. They are
likely either to be founders or else already known to the founders
from “previous lives,” working together in a similar company.

One small point to be aware of is if any of the founders was
packaged out from a previous company (as part of a layoff, for
example) and signed a release. Almost certainly the release will
explicitly prohibit the ex-employee from recruiting people from
the old company for a period of time. However, that doesn’t
mean you can’t hire them; they have a right to work where they
want (at least in California, ymmv). The best way to play safe is
for such ex-employees not to interview the candidate. That way
they can’t be accused of “recruiting.”

The first problem about hiring, especially if the founders are
doing their first startup, is the deer-in-headlights phenomenon of
not being able to make a decision about who to hire. Most of the
time a candidate will never want to work for you more than right
after the interview, having heard the rosy future, seen the
prototype, met the team and everything. The quicker you can get
them an offer, the more likely they are to accept. Firstly, they
won’t have had time to interview with anyone else equally
attractive and secondly they won’t have had time to start to get to
the sour-grapes stage of rationalizing why you haven’t given
them an offer already. One advantage startups have over bigger
companies is that they can make people an offer very fast. It can
make a big difference: when I first came to the US I was
promised an offer from Intel and H-P. But VLSI Technology
gave me an offer at the end of the day I interviewed, so I never
even found out what the others might have offered (Intel had a
hiring freeze before they'd have been able to get me an offer, as it
happened). Don’t neutralize the fast offer advantage that startups
have by being indecisive.

The second problem about hiring is hiring the wrong people.
Actually, not so much hiring them. It goes without saying that
some percentage of hires will turn out to be the wrong person
however good your screening. The problem comes when they

 103

start work. They turn out to be hypersmart, but think actually
delivering working code is beneath them. They interview really
well but turn out to be obnoxious to work with. They don’t show
up to work. They are really bright but have too much still to
learn. Whatever. Keeping such people is one of the reason
startups fail or progress grinds to a halt.

Firing people is an underrated skill that rarely gets prominence in
books or courses on management. Even in large companies, by
the time you fire someone, everyone around you is thinking,
“what took you so long?” In a startup, you only have a small
team. You can’t afford to carry deadweight or, worse, people
who drag down the team. It doesn’t matter what the reason is,
they have to go. The sooner the better. One thing to realize is that
it is actually good for the employee. They are not going to make
it in your company, and the sooner they find a job at which they
can excel, the better. You don’t do them any favors by keeping
them on once you know that they have no future there.

It may be the first time that you’ve fired someone in your life,
which means that it will be unpleasant and unfamiliar for you.
Whatever you do, don’t try and make that point to the employee
concerned. No matter how uncomfortable you might feel, he or
she is going to be way more uncomfortable. It doesn’t get much
easier with experience. It will always be more fun to give
someone a bonus than to terminate them.

Make sure to have someone else with you when you terminate
someone. In a big company that will be someone from HR, in a
small company you just want someone to be a witness in case of
a lawsuit (“he told me he fired me because I was a woman”). In
California you must give them a check for all pay due there and
then (actually I think you have until the end of the day) so make
sure you have it ready. Normally you will want the employee to
sign a release saying that they won’t sue you and so on. If you
give the employee severance (a good idea to give at least a little
so the other employees feel that they work for a company that is
fair) then the severance is actually legally structured as payment
for that release. So don’t give them the check until they sign (and
if they are over 40, there is a waiting period during which they

104

have the right to rescind their signature, so don’t give them the
check until that expires).

Application Engineers
Application engineers are the unsung heroes of EDA. They have
to blend the technical skills of designers with the interpersonal
skills of salespeople. Most AEs start out as design engineers (or
software engineers for the embedded market). But not all design
engineers make it as AEs, partially because, as I’m sure you’ve
noticed, not all design engineers have good interpersonal skills!
There’s also another problem, memorably described to me years
ago by Devadas Varma: “they’ve only been in the restaurant
before; now they’re in the kitchen they’re not so keen on what it
takes to prepare the food.” Being an AE means cutting more
corners than being a design engineer, and some people just don’t
have that temperament. An AE usually has to produce a 95%
solution quickly; a design engineer has to take whatever time it
takes to produce a 100% solution.

AEs have a lot of options in their career path. As they become
more senior and more experienced they have four main routes
that they can take. They can remain as application engineers and
become whatever the black-belt AEs are called in that company,
be the guy who has to get on a plane and fly to Seoul to save a
multi-million dollar renewal. They can become AE managers,
and run a region or a functional group of AEs. They can move
into product marketing, which is always short of people who
actually know the product. Or they can move into sales and stop
resenting the fact that when the deal closes, for which they feel
they did all the work, the salesperson makes more than they do
(and usually discover sales is harder than they expected).

In a startup, in particular, the first few AEs hired can be the
difference between success and failure. The first release of a
product never works properly, never quite matches what the
market need is and is simply immature. The AE has to keep the
customer happy by substituting their own expertise for the
deficiencies of the tool while at the same time conveying back to
engineering the improvements that are required. Most startups are

 105

attacking some sort of walled city, in the sense that there is an
incumbent tool/methodology that is already in use, and the
startup has to prove that they are better. In fact, not just better,
compellingly better. The initial value proposition for most
startups, when you look from the 10,000 foot level, is that it is
riskier to stick with the existing methodology rather than trust the
startup and try the new technology. Getting the customer
decision-maker to that point is a mixture of technology (it has to
work well enough) and trust in the AE (whatever happens, this
guy is going to be there for me). Both factors have to be there to
close those so-important initial orders because no matter how
good the technology looks, the customer knows that the tool is
not mature and might fail at any moment.

It’s been interesting looking at the downsizing of GM and
Chrysler’s dealer network. It seems that part of the reason that car
companies sell through independent dealers is that in the early
days, nobody would buy a car from halfway across the country
without a local guy in-town they trusted (and the situation got
locked in place because those local guys became the richest
people in town and got the states to pass laws that they could
never be designed out; it almost every state it is illegal for GM to
sell you a car directly). But that trust issue is just like the AE
issue. Customers wouldn’t buy a car (tool) from a startup without
a dealer (AE) too. It didn’t matter how good Ford’s car appeared
to be in the showroom; in 1930, nobody trusted it not to break
frequently (a good assumption) and they needed to trust that their
investment was going to continue to be good.

AEs are really hard to find for a startup. Good AEs are pretty
highly compensated, and so it is hard to match their salary, so it
takes a lot of stock to makeup the difference. I did some
consulting for a semiconductor equipment company once and
they had an EDA product but they failed to hire a good AE since
their own AEs were paid a lot less than a black-belt EDA AE and
their salary policies were too inflexible. Good AEs are like gold
and if you don’t have them you don’t get any gold.

106

The career path train doesn’t stop
every day
When I lived in France there was a program called “La piste de
Xapatan” in which contestants had to negotiate a series of
challenges before whizzing down a zipline and running up a hill
to catch a train. But “le train de Xapatan part toujours à l’heure”
(the train from Xapatan always leaves on time) which meant that
usually the contestant would arrive just after the train started to
move and either just catch it or just miss it by seconds.

The career path train, however, isn’t like that. It doesn’t stop at
the station every day and when it does stop you have to decide
whether or not to get on. When you want a change of job for
some reason, there doesn’t seem to be a train. And when you
aren’t really looking for anything the train shows up and you
have the opportunity to board while it is in the station. But it
won’t be in the station again tomorrow; you have to decide right
now.

It’s especially hard to decide if the opportunity takes you out of
the comfort zone of what you have been used to in your career so
far, or if it involves relocating. Two times the career path train
stopped for me were “would you like to go to France and open up
an R&D center for us?” and “would you like to return to
California and run all of R&D?” There’s always some sort of
tradeoff in a promotion, not just more money for doing what you
are already doing.

Big companies usually have dual career ladders for engineers,
with a management track and a technical track. However, it’s a
bit of an illusion since only the strongest technical contributors
really have a sensible option of staying completely technical and
continuing to advance. I think dual career ladders are mostly
important because they institutionalize the idea that a senior
technical person might be paid more than their manager,
sometimes a lot more. In more hierarchical eras that didn’t
happen.

But the fact that only the strongest engineers can keep advancing
as engineers means that at some point most of them will have to

 107

transition into management or into some other role that makes
use of their engineering background along with other skills to do
something that is more highly leveraged than simply doing
individual contributor engineering. It’s a big step that will require
you to learn stuff you’ve not had to do before.

But people are often not keen to take that critical step out of their
comfort zone. I’ve sometimes been surprised at how reluctant
people are to step up and take on new challenges when I’ve
offered them what is essentially a significant promotion. Funnily,
one of the biggest issues is always the salary review process.
Everybody wants to avoid the work and responsibility of
reviewing people that work for them, and sometimes this hate is
so visceral that people refuse to have anyone report to them. I’ll
be the first to admit that reviewing people’s performance is not
the most enjoyable part of management, but it is just a few days
per year for the formal part. Actually the trick is to make sure that
nothing in a review is a surprise because you’ve already been
communicating feedback both good and bad throughout the year.
It is bad management on your part of you surprise someone with
a really bad review when they didn’t think anything was wrong.

I’m sure that there are anecdotes to the contrary, but in general I
think most people are best to take opportunities when they are
offered. This is especially true in startups and small companies.
They tend to grow downwards, in the sense that people there
early get to bring in the lower levels. There are more
opportunities for responsibility early (a plus) but less formal
training (a negative) unlike large companies that often have in-
house management training.

So when the career path train stops, you’d better have a very
good reason not to get on.

How do you get a CEO job?
How do you get to be CEO? I’ve done it a couple of times now
and I’d be happy to do it again. I assume we are talking about a
startup of some kind rather than a large company. But if a private
equity fund takes a semiconductor private they face many of the
same issues in their choice of CEO.

108

The reality is that the number one criterion that anyone is going
to look for if they have a free choice is that you have been CEO
before. Better still, is that when you were CEO before, you had a
good exit, selling the company you ran for a good price or at least
generally having left the company in better shape than you found
it.

So if you’ve been CEO before and not made too much of a mess
of it, you can get to be CEO again. So how do you get your first
gig? Well, you are not going to get headhunted to run a class-A
company. Before anyone is going to trust you with a class-A
company you have to have taken a mess and made something of
it. Everyone’s first CEO job is to take a company with little hope
and try and turn it around. This isn’t as bad as it sounds since
expectations are low and so the standards that the board will
judge you by are not as demanding as if you took a company with
great potential. This type of CEO job typically comes along
because you are in the right place at the right time. My two stints
as CEO came about this way. At Compass, I was “on the bench”
in the finance division doing M&A when VLSI decided Compass
needed new leadership. I was someone who knew the company
and could take over instantly without needing to do a CEO
search. At Envis, I was VP marketing (actually only working
part-time as a consultant) when I was asked to take over.

If the board has time to do a proper search for a CEO, probably
the most important criterion is that you are “fundable.” By that
they mean that investors are going to view you as CEO as an
asset not a liability. The best proof of fundability is that you have
raised money successfully in a previous CEO job, but a substitute
is the right combination of business savviness and track record.
You’ve probably heard that VCs invest first in the market, then
the team and only then in the technology. So the CEO is really
important. The perfect CEO can raise money simply on his name
(imagine if Marc Andreeson decided to start another company).
More mortal CEOs are regarded as an asset to the company, a
CEO who isn’t going to need to get swapped out later. Lower
down are people who are at least OK for the current stage of the
company, with a question mark over whether they will make it
long term. That sounds bad, but in fact 75% of founding CEOs
don’t make it so it’s not as disparaging as it sounds.

 109

Of course, the guaranteed way to be CEO is to found your own
company. You get to choose the CEO and can pick yourself. But
whether you make a good CEO and whether you can get funded
are not questions that go away. You just have to answer them
yourself.

Managing your boss
There are shelves of management books about how to manage
people that work for you. I don’t know of any management books
about another very important skill: how to manage your boss. Or,
if you are CEO, how to manage your board.

Instead of thinking of your boss as someone who tells you what
to do (they’ll obviously do some of that) think of them as
someone that you are going to tell what you are doing and how
they can help you accomplish your goals.

This is not about sucking up to your boss and being a yes-man.
You boss is probably not so vain and stupid as to regard that as
A-team behavior. You can’t always get what you want using your
own personal charisma, sometimes you actually need your boss
to do some tackling for you to leave the field clear.

One rule I’ve always tried to follow is not to produce big
surprises. Of course things can go wrong and, say, schedules can
slip. But they don’t go from being on time to being 6 months late
overnight, without the slightest earlier hint of trouble. It is better
to produce a small surprise and warn your boss that things might
be getting off track (and have a reputation for being honest) than
to maintain the image of perfection until the disaster can no
longer be hidden. Just like the salesman’s mantra of
“underpromise and overdeliver” your boss is a sort of customer
of yours and should be treated the same way.

Lawyers are advised never to ask a witness a question that they
don’t already know the answer to. Getting decisions that cut
across multiple parts of a company can be a bit like that too.
Never ask for a decision when you don’t already know exactly
what everyone on the decision making panel thinks. Ideally they
all buy into your decision, but in the middle of a meeting is not

110

the time to find out who is on your side and who isn’t. Your boss
can be invaluable in helping to get his peers on-board and finding
out what they think in a way that you, being more junior, perhaps
cannot.

In some ways this sounds like office politics, but actually I’m
talking getting the company to make the correct decision. Often
someone junior is the best-placed person to know the right
technical solution, but they are not senior enough to drive the
implementation if it requires other groups to co-operate. That’s
when managing your boss comes into the picture.

If you are CEO you have some of the same issues managing your
board. But your board is not one person and they all have
different capabilities that you can take advantage of. But, just as
in the decision committee scenario above, if you need a decision
from the board make sure that everyone is bought into it already,
or at least have some of the board ready to counterbalance any
skeptics.

Integration and differentiation
EDA acquisitions are very tricky to manage in most cases. This is
because most acquisitions are acquiring two things: a business
and a technology.

In the long run the technology is usually the most important
aspect of the acquisition but the business is important for two
separate reasons. Firstly, the revenue associated with the
standalone business, ramped up by some factor to account for the
greater reach of the acquiring company’s sales channel, is the
way that the purchase price is usually justified. It is too hard to
value technology except as a business. That’s why the venture
capital euphemism for selling a company for cents on the dollar
is “technology sale.” But more importantly, the business is the
validation of the technology. Nobody can tell whether a startup’s
technology is any good except by looking to see if anyone is
buying it.

However, once the acquisition is done there is an immediate
conflict. There is a running business to be kept going. After all

 111

that was the justification for the purchase price. It took the whole
company to do that before acquisition, so presumably it will take
the whole company afterwards. In the short term, the
differentiation of the technology rests on its continuing to sell
well. But the real reason for the acquisition is often to acquire the
base technology and incorporate it into the rest of the product
line. The only people who know the technology well enough to
do this are the acquired company’s engineering organization.
Suddenly they are double booked, developing the product to the
plans that underpinned the forward bookings forecast, and
working with the acquiring company’s engineers to do the
integration.

An example. When I was at Cadence we acquired Cadmos for
their signal integrity product SeismIC. plus other stuff in
development. Googling back at the press release, I see that a
person whose name sounds strangely familiar said:

"Adding CadMOS signal integrity analysis engines to established
Cadence analog and digital design solutions provides us with the
best correct-by-design timing and signal integrity closure
capabilities in the industry," said Paul McLellan, corporate vice-
president of custom integrated circuit (IC) products at Cadence.

Except, of course, to realize that vision required the Cadmos
engineering team to work full-time on integration. Meanwhile,
there is a business going full blast selling the SeismIC
standalone. I believe there was also an earnout (part of the
acquisition price depends on how much was sold) based on the
standalone business only. A difficult balancing act for the
engineering managers and myself.

We had similar issues when Cadence acquired Ambit. We needed
to integrate the Ambit timing engine (and later the underlying
synthesis technology itself) into Cadence’s whole digital product
line at the same time as we were trying to give Synopsys a run for
their money in the standalone synthesis business. Both of those
goals were really important strategically but there was only one
set of engineers.

Balancing these two conflicting requirements is probably the
hardest aspect to manage of a typical EDA acquisition. It is really

112

important, not just for financial reasons, to maintain the
leadership position of the technology in the marketplace. At the
same time, integrate that leadership technology so that it is
available under-the-hood in other parts of the product line which,
in the end, is probably how it will mostly get into customer's
hands. Preserve the differentiation while doing the integration.

Big company guys don’t do small
Big company guys think that they can run startups because
they’ve run small divisions of big companies. So that must be the
same, right?

Actually the two things are very different and not many people
seem to be good at making the transition once they have got used
to how a big company works, with their assistants, and finance
organization, and HR department and all the rest.

When I was at VLSI and the fab was not running effectively, the
company would hire a VP from TI or Motorola (where the CEO
had previously worked and so knew good people he’d worked
with before). These guys were used to running a fab that was
running smoothly, with a large organization around them. They
were not used to sorting out a dysfunctional fab with very few
people to support them. When they didn't work out, they were
doubly expensive because they needed big severance packages to
get rid of them.

When you become CEO of a startup, you have do everything
yourself. Especially if the startup is attempting to run very lean
with minimal cash burn, and conserve most of that cash for
engineering. You want to put together a business plan? Fire up
Excel. There’s at most a part-time accountant in the finance
department and you can’t delegate it to them. Even if you have a
“CFO for a day” part-time senior finance consultant, they don’t
understand the business intimately like you should because that’s
bound up with strategy which is not just something financial.
They can help review the plan but they can’t do it for you.

If you’ve not got a very good engineering manager then you can’t
rely on the current schedules. And you don’t have enough money

 113

to do what you would in a big company and hire a good
engineering manager, or even a really good product management
specialist. You have to do that yourself too. In a typical startup,
as CEO, you will probably be the only person who isn’t writing
code or designing chips.

Another problem with big companies is that people don’t really
know how successful their business really is, since it is often very
bound up in company-wide financial measures that are not
closely enough tied to reality. So it is easy to look good when you
aren’t, or looks undeservingly bad. If you are in a big EDA
company, nobody knows how to really allocate revenue from big
volume purchases to product lines. If you are in a semiconductor
company, the cost model is rarely as accurate as necessary, and
fab variances (because the fab is overloaded, or underloaded, or
not yielding as expected) distort it again.

If your company has a few hugely profitable product lines (think
Intel or Synopsys) then the smaller product lines may look good
or not depending on how the overhead of the company is
handled, and whether the profitable lines eat a lot of overhead
leading to everyone else looking good (margin bleed-through), or
the opposite, leading to everyone else looking worse than reality.
It is too expensive to do full activity-based costing (ABC) and so
overhead is often misleading. If cost of sales is a fixed
percentage of revenue, that assumes all products and all order
sizes are equally easy to sell, which is clearly not true. But this
may make some product lines look great (hire that manager) and
others look poor (and he looked so promising) even though it
purely an artifact of the underlying management accounting.

Although it is possible to make the transition from a big company
to a startup, but both EDA and fabless semiconductor are littered
with people who failed to do that. They were very successful at
running a division of a big company, but were unable to translate
that skill into success at either founding or coming into a startup
and getting it to run well.

114

Being CEO
I talked earlier about how you get to be CEO (basically, luck the
first time; track record after that). But what does being a CEO
entail?

I think all senior management jobs consist of two separate
dimensions that have two separate skill sets. I call these
management and leadership. Some people are good at both, some
are good at only one.

Management is the basic operational management of the
company. Presumably you already know how to do this, at least
in your own domain (engineering, marketing, sales, etc) or you
probably wouldn’t have been promoted. When you get more
senior you have a new challenge: you have to manage people not
from your own domain. If you are an engineer, it’s like
salespeople are from another planet and you don’t understand
what makes them tick. If you are a salesperson you may think the
same about engineering. If the company is medium sized things
are not so bad since you’ll have a sales manager and an
engineering manager to insulate you. But if the company is small
then you’ll have to manage the aliens directly. My
recommendation is to get some advice. If you’ve never set up a
sales commission plan before, don’t assume that because you are
a smart engineer who knows Excel that you can just wing it. If
you don’t know a friendly VP sales who can give you free
advice, find a consultant and pay them. It’s a lot cheaper than
making major mistakes.

As CEO you may have only an accountant (or maybe nobody) to
support you in finance. I think it makes sense to get a “CFO for a
day” consultant to help you unless you are very comfortable with
all the finance issues and already have a good feel for how to put
together a business plan, how to turn a sales plan into a cash-flow
forecast and so on. If your eyes glaze over when you read my
blog postings on finance, you need someone to help you.
Whatever you do in finance, don’t treat it as a problem that will
go away if you ignore it. You’ll need to get a financial audit done
at some point, sooner than you expect, and cutting corners will
then come to light.

 115

If you are not an engineer by background, you can’t manage
engineering. That’s not to say that you aren’t capable of
managing engineering but just like salespeople won’t respect you
unless you’ve carried a bag, engineering people want to be
managed by someone who understands technology and
development and knows what it takes to get a product out. If you
don’t have an engineering manager you’ll at least need to trust
one of the senior engineers to be feeding you the unvarnished
truth.

The second leg of being a CEO or a senior manager is leadership.
The most important aspect of this is to get everyone in the
company committed to moving the company in the same
direction. Unless you make truly stupid decisions, it is more
important that everyone is aligned than that the decision is ideal.
As General Patton famously said, “A good plan executed
violently now is better than the perfect plan next week.” In
business, “violently” is the wrong adverb but the sentiment is the
same.

Having said that, it is also important that the overall strategy of
the company is good and represents the best that the management
team can come up with. It is also important to be flexible. If
something isn’t working then you’ll need to try something else
and preferably while you still have enough money in the bank to
find out whether that new approach is good. Remember, most
successful startups end up doing something somewhat or
completely different from what they set out to do initially.

A general rule about management and especially being a CEO: if
something good happens in the company, everyone will tell you
about it. If something bad happens, nobody will tell you. Despite
the proverb that "bad news travels fast," inside a company bad
news travels really slowly so you need to make a special effort to
discover it. In the early stages it is good to have someone in
engineering who is a personal friend who will not hide bad news.
Later on, you need someone in sales like that who’ll tell you what
is really happening when the company tries to sell the product.
You can’t sit in your CEO office and believe everything that you
are told. You have to get out and dig.

116

Getting out of EDA
Over the last year I’ve had lots of meetings with people who used
to work in EDA and have lost their jobs, or, in some cases, still
have a job but want to make a longer term change. The subject
that comes up all the time is “How do I get out of EDA?”

This is not unreasonable. EDA has shrunk its employment over
the last couple of years and it is unlikely to come back again to its
previous level. So some people will need to find jobs in new
industries.

If you are an engineer in EDA then you know how to do very
technical programming. You could certainly do other forms of
technical programming. But the sweet spot in the job market is in
internet companies and there is a lot of specialized stuff there that
you probably don’t have experience of. If someone wants to get
an internet startup going quickly then you want people who
already know Ruby on Rails, mySQL or the iPhone developer kit
or whatever. Not someone really smart who could probably learn
that stuff eventually. Personally, I think this is silly. A smart
programmer can suck up a language in no time and will run rings
around someone less good even with a lot of domain experience.
Good programmers are not 30% better than average ones, they
are 10 times better. But even if you get hired, you don’t get paid
for all that deep knowledge of, say, placement that you’ve spent
years acquiring.

If you are in marketing or management it is even more difficult.
At one level you have experience of running business to business
(b2b) marketing for a software company. But you have years of
understanding of IC design and none of relational databases or
whatever, which makes it hard to make that transition.
Furthermore, most internet companies are business to consumer
(b2c) or internet-based business to business which is very similar.

I interviewed over a year ago with a b2c company and I was
amazed that they seemed interested in me. It was bit like the
Groucho Marx joke about not wanting to be a member of any
club that would have him. The fact that they seemed interested in
hiring me for a job that I was so manifestly unqualified for

 117

(although it would have been interesting to learn) made me doubt
their competence.

If you are in some other domains you get stuck in those domains.
I have a friend who is in finance. That allows you to work in all
sorts of different companies, but always in finance where all
companies look very similar. She wants to get out of finance,
which is a similar problem. She’s smart enough to do all sorts of
jobs but the only jobs that will pay anything close to what she is
used to are ones that value all that financial experience.

It’s a tough transition to make. Your experience is what makes
you valuable in EDA (or finance or whatever). If you go
somewhere where that is not valued it is very hard to make
anything close to what you made in EDA. After all, EDA pays
pretty well so long as you have a job.

Hunters and farmers: EDA
salesforces
I wrote recently about mergers in the EDA space, mainly from
the point of view of engineering which tends to end up being
double booked keeping the existing standalone business going
while at the same time integrating the technology into the
acquiring companies product line.

The business side of the acquired company has a different set of
dynamics. They only have to cope with running the existing
business since any integration won’t be available for sale for
probably a year after the acquisition. The basic strategy is to take
the existing product that has presumably been selling well, and
make it sell even better by pumping it through the much larger
salesforce of the acquiring company.

The big question is what to do about the salesforce of the
acquired company. A big problem is that there are really two
types of salespeople that I like to call hunters and farmers. A
startup salesforce is all hunters. A big company salesforce is all
farmers. Some individuals are able to make the transition and

118

play both roles, but generally salespeople are really only
comfortable operating as either a hunter or a farmer.

Hunters operate largely as individuals finding just the right
project that can make use of the startup’s technology. Think of a
salesperson trying to find the right group in Qualcomm or the
right small fabless semiconductor company. Farmers operate
usually in teams to maximize the revenue that can be got out of
existing relationships with the biggest customers. Think of
Synopsys running its relationship with ST Microelectronics.

Given that most of the hunters are not going to become good
farmers, or are not going to want to, then most of the acquired
company’s salesforce will typically not last all that long in the
acquired company. But they can’t all go immediately since they
are the only resource in the world that knows how to sell the
existing product, that has a funnel of future business already in
development and probably have deals in flight on the point of
closing. One typical way to handle things is to keep some or all
of the existing salesforce from the acquired company, and create
an overlay salesforce inside the acquired company specifically to
focus on helping get the product into the big deals as they close.

The challenge is always that the existing salesforce doesn’t really
want a new product to introduce into deals that are already in
negotiation. They have probably already been working on the
deal for six months, and they don’t want to do anything to disrupt
its closing. Adding a new product, even though it might make the
deal larger, also adds one more thing that might delay the deal
closing. The new, unknown or poorly known product, might not
work as advertised. As I’ve discussed before, big company
salesforces are very poor at selling product where the customer
isn’t clamoring for it.

So the typical scenario goes like this: the small acquired company
salesforce is sprinkled into the big acquiring company salesforce
for a quarter or two to make sure that initial sales happen and so
that the farmers learn how to sell the product. After a quarter or
two, the hunters will either drift away because they find a new
startup opportunity, make the transition to being farmers in their
own right (they may have been at some point in their career

 119

anyway), or else they fail to make the transition and end up being
laid off.

Running a salesforce
If you get senior enough in any company then you’ll eventually
have salespeople reporting to you. Of course if you are a
salesperson yourself this won’t cause you too much problem;
instead, you’ll have problems when an engineering organization
reports to you and appears to be populated with people from
another planet.

Managing a salesforce when you’ve not been a salesperson (or
“carried a bag” as it is usually described) is hard when you first
do it. This is because salespeople typically have really good
interpersonal skills and are really good negotiators. You want
them to be like that so that they can use those skills with
customers. But when it comes to managing them, they’ll use
those skills on you.

When I first had to manage a salesforce (and, to make things
more complicated, this was a European salesforce with French,
German, English and Italians) I was given a good piece of advice
by my then-boss. “To do a good job of running sales you have to
pretend to be more stupid than you are.”

Sales is a very measurable part of the business because and order
either comes in or doesn’t come in. Most other parts of a business
are much less measurable and so harder to hold accountable. But
if you start to agree along with the salesperson why an order
really slipped because engineering missed a deadline, then you
start to make them less accountable. They are accountable for
their number, and at some level which business they choose to
pursue, and how it interacts with other parts of the company, is
also part of their job. So you just have to be stupid and hold them
to their number. If an order doesn’t come for some reason, they
still own their number and the right question is not to do an in-
depth analysis with them about why the order didn’t come
(although you might want to do that offline), but to ask them
what business they will bring in to compensate.

120

Creating a sales forecast is another tricky skill, again because an
order either comes or doesn’t come. One way of doing it is to
take all the orders in the pipe, along with a percentage chance
they’ll close. Multiply each order by the percentage and add them
all up. I’m not a big believer in this at all since the chance of a
10% order closing in the current period is probably zero and it’s
easy to fool yourself. Yes, the occasional blue bird order comes
out of nowhere, sometimes so much out of nowhere it wasn’t
even on the list. I’ve never run a huge salesforce with hundreds
of salespeople; the law of averages might start to work a bit better
then, but typically a forecast is actually build up with the
judgment of the various sales managers up the hierarchy.

Another rule I’ve learned the hard way is that an order than slips
from one quarter to the next is almost never incremental. You’d
think that if the forecast for this quarter is $500K, and the
forecast for next quarter is $500K, then if a $100K order slips
that you have a bad $400K quarter now but you’ve got a good
$600K quarter coming up. No, it’ll be $500K. Somehow the
effort to finally close the slipped order comes out of the effort
available to close other orders and you are wise not to count on a
sudden blip in sales productivity.

Salespeople are a pain to hire because you have to negotiate with
them and they are at least as good, if not better, negotiators than
you are. It’s even worse in Europe where, if you don’t simply lay
down the law, you can spend days negotiating about options for
company cars ("I insist on the 8-CD changer"). At least in the US
most of the negotiation is over salary and stock, which are
reasonable things to spend some time on.

Another thing I’ve discovered is that salespeople really only
respect sales managers who have themselves been salespeople in
the field. Not marketing people who have become sales
managers, not business development people who’ve become
salespeople. It’s probably partly camaraderie but sales seems to
be something that you have to have done to really understand.
You want your sales manager to be respected by the salespeople
because you want them to bring him into difficult sales situations
to help close them, and they won’t if they don’t trust and respect
him.

 121

How long should you stay in a job?
How long should you stay in a job? The answer will depend a bit
on your personality. But I think a job is interesting so long as
you’re learning a lot and that seems to mean that you should stay
in a job about three years. The first year you don’t know how to
do the job and your are learning a lot, the second year you are
getting the hang of it and by the third year you have become good
at the job. But being good at the job typically means that you
don’t have much more to learn from the job by continuing to do
it. It’s time to move on.

When I say it’s time to move on I don’t mean that you need to
move company, although that is certainly one option. If you
move to work on a new product you’ll be learning stuff again. If
you relocate to Japan you’ll be learning stuff again. If you move
from application engineering to product marketing you’ll be
learning again.

In particular, if you get promoted your job will change and you’ll
be learning stuff again. This is especially acute the first time you
are promoted into management. Typically you are the best
engineer or salesperson or whatever on the team and so you get
promoted. Now you have to learn about management, a subject
that previously you may not have taken much interest in. It is an
especially difficult transition since your comfort zone is not to do
management at all, just do everyone’s jobs for them (after all,
you were the best on the team so you are better than they are). It
is a hard lesson to learn that as a manager your output is not what
you do personally, it is the output of your group. It is not a
positive that you did a lot of the work yourself, that means you
are not doing a good job of nurturing the people in your group,
not training them to be as good as you are.

People will often move on to another company anyway if they
are bored since there might not be an appropriate position to
move into, or a promotion to be had. This is especially true of
new graduates who get fed up with some aspects of the company
bureaucracy or culture and move to a new company to escape.
However, the new company is typically the same (although
different in details). It’s just the nature of companies that they

122

don’t always do just what you think they ought to. The result of
this phenomenon is that I think the best value people you can
possibly hire are people who have already worked for at least one
company and have 3-5 years experience. At that point they are
enormously more productive than a brand new graduate, not
about to leave because of company bureaucracy, and although
they are paid more they are not paid a correct premium. The new
graduates are probably overpaid and the 3-5 year people
underpaid.

I know mostly about engineering and a good engineer is not 30%
better than a poor one, they are ten times more productive. So 3-5
year guy is not 50% better than a new graduate, which may
reflect the pay differential, they may be 5 times better.

Spending money effectively
People die because they run out of oxygen. It doesn’t matter what
the reason is—trauma, cancer, heart attack—lack of oxygen is
what finally kills us. In the same way, startups die because they
run out of cash. It doesn’t matter what the reason is—engineering
never finished the product, the customers wouldn’t buy it, it
wasn’t possible to raise another round—running out of cash is
what finally kills us.

So obviously cash is so important in a startup that it should never
be spent? Well, not so fast. I’ve seen some really silly decisions
about how to save money in startups over the years.

Most of the cash being burned in a software startup goes on
engineers’ salaries. Consequently it makes sense to do everything
to make their work environment as productive as possible. Do not
force them to use old computers because they are already around.
Computers are pretty cheap these days, a few days of an
engineer’s salary will buy you something really high end. Do not
equip the servers with so little disk space that they have to delete
old data that will eventually turn out to be useful. Terabyte disk
drives are under a hundred dollars. And don't forget to make it
easy for your engineers to work from home, by having good VPN
and paying for them to have good internet connections. You pay

 123

your engineers more in an hour than their internet connection
costs for a month.

One thing we discovered at Envis was that companies that
provide PCs for gamers deliver the most bang for the buck. They
overclock the designs, add special fast memory, have custom
motherboards and so on. For a lot less than Dell will sell you a
machine, you can get one that is half as fast again, with lots of
cores. And a bonus, they look really cool.

Do not hire a consultant and then, for egalitarian reasons, give
them a day on which it is their job to clean the kitchen at
$150/hour. In fact, don’t make your engineers clean the kitchen
anyway. That’s pretty pricy labor. And don't annoy your
engineers by charging for coffee or soda.

In a semiconductor company, there is an additional significant
cost, namely design tools. Sometimes this is a cost in a software
company too since they need tools for quality assurance and
integration purposes. This is a hard balance to get right since too
few tools again means that what looks like saving money on tools
is really burning extra money on engineers’ salaries. Too many
tools obviously wastes money more directly. When I was at
Cadence we had a venture investment program where we would
provide almost unlimited tools to startups for a mixture of cash
and an equity position. We’d discovered that most startups
underinvested in tools because they were so expensive but that
this jeopardized their success.

Benefits, especially medical, are another area where startups can
be penny wise and pound foolish. The most cost effective way to
handle medical benefits, given that usually everyone is young and
fit, is a combination of catastrophic coverage and a health savings
account (HSA). In fact this is probably the best way to handle
medical period, but that’s a political hot potato right now. It is
what Whole Foods does and what John Mackey, the CEO, has
recently got into trouble with the left for recommending as better
than what congress is attempting to put together.

Bottom line: remember Gordon Bell’s line that cash is more
important than your mother. But remember that engineers’

124

salaries are your biggest investment, and it is foolish not to do
everything to make that investment as effective as possible.

Interview questions
A friend of mine is interviewing for a marketing position at an
EDA startup. I’d better leave everything anonymous to protect
the innocent. He (or maybe it was she) asked me what good
questions to ask would be.

There are two reasons for asking questions in an interview, when
you are the candidate. One is that the type of questions you ask
reveal that you are already thinking about the important issues
affecting the company. And the other is that you genuinely want
to know. In most cases, the questions serve both ends. In fact
most questions you ask should help you decide if the company is
going to be successful and whether you have the right skillset to
improve those chances.

When you interview for a position at a startup, it is important to
realize that you are interviewing the company as much as they
are interviewing you. The point of working for a startup is that
the stock they give you will be valuable (otherwise go do
something else) and they need to convince you of that. When you
interview at a big successful company it is much more of a case
of them interviewing you. After all, if you’ve done your
homework, you should know what makes them successful. Most
of that information is in the public domain.

The most important question I like to ask is why the senior
people in the company believe it will be successful. Since they
work there, presumably they do but sometimes that have a hard
time articulating why. The answer needs to be more than just
having good people or good technology. The market that they sell
into needs to be large enough and homogenous enough for their
(or any) product strategy to have the possibility of being
successful.

Another thing I like to ask are: what is the one reason people buy
your product? Of course if they don’t have a good answer then
there is all the more upside from doing a great job at marketing

 125

(if you are interviewing for a marketing position). But typically,
if most of the company is engineers, they’ll have too many
answers to this question rather than too few. Avoid the fine art
and bicycles problem. City Slickers marketing is finding out the
“one thing” and becoming focused on delivering that. If
customers are all buying for different reasons, it is not possible to
build a repeatable sales process.

A third question is to ask, which is good in non-startups too, is
“If I got the job and was starting tomorrow morning at 9am, what
would be the most important things to get working on?” They
may not be the most important strategic things long-term, but if
there hasn’t been any marketing before there is usually a backlog
of urgent stuff: the customer presentation is hopeless, the website
hasn’t been updated in ages, the company logo sucks,
engineering needs a decision about which standard to support, or
whatever.

Acquistions: cull the managers
When a company acquires another one, not just in EDA, there is
often an internal group already doing something similar. For
example, Intuit has just acquired mint.com and they already have
a product, Quicken Online that competes in pretty much the same
space. So how to merge the companies and the products?

Be ruthless and cull all the director-level management of the
existing product (Quicken Online in this case). Put the managers
of the acquired product in charge.

This is one thing that I learned at Cadence (you might have
noticed that Cadence has done a fair number of acquisitions over
the years, to say the least). The first thing to do is to lay off all the
managers responsible for the internal competing product. They
will inevitably try and sabotage the acquisition in more or less
devious ways, worry too much about users of the existing product
and so on. The junior worker-bee programmers or designers can
be reassigned; they are much less emotionally invested in the
failed internal product and have the knowledge to merge any
parts of the old product that make sense.

126

In the Quicken case they seem to be doing something different,
based on what they have said anyway. The correct thing to do, in
my opinion, is to put the mint.com guys in charge of everything.
Not just their own product but also the Quicken Online product.
And the managers of Quicken Online need to go. They probably
weren’t in favor of the acquisition and will subtly try and show
that it was a mistake and try and ensure as much as possible of
their own work survives going forward. But it is the mint.com
product where as much as possible must survive going forward,
and the best way to ensure that is to put those guys in charge.

Steve Jobs did just this when he returned to Apple along with the
operating system from Next (internally Mac code is still littered
with classes that start NS for NextStep). He put the Next software
managers in charge and pushed out the managers who had been
responsible for the failed strategy that Apple had been pursuing.
The Next managers could implement their strategy much more
easily if they didn’t have another set of managers arguing with
them about every decision.

Everybody knows that the big time sink in mergers is where
products overlap. But the best way to handle this is to make sure
that the managers of the successful, acquired, product are in
charge of those decisions and not the managers of the failed
product. This doesn’t make the problem go away completely,
after all the customers of the existing product cannot typically
simply be upgraded painlessly to the new product, but at least it
means that the winning product will be the acquired one, which is
essentially the decision that senior management had already
determined is what they wanted to have happen when they
decided to do the acquisition.

Not all mergers are like this, of course. Sometimes the new
product line is completely complementary with no overlap. But
often, under the hood, there is more overlap than is obvious.
When Cadence acquired Ambit, they were already ahead of the
curve because their internal synthesis product, Synergy, was
doing so badly that they had killed it off six months before they
acquired us. But one reason for acquiring Ambit was for its
timing engine, which seemed to be the best in existence at that
time, but the existing timing team at Cadence still controlled

 127

timing strategy. It took months to arrive at the foregone
conclusion that the Ambit timing engine should “win” and
become the Cadence timing engine, a decision that would have
taken 5 minutes if Ambit’s timing team had been put in charge on
day 1.

It is very difficult to keep innovation going after an acquisition,
especially if it is done at a high price so that many individuals
have made significant money and are really hanging around
largely to vest the rest of their stock. Keeping a competing team
around, and one that already is better connected politically,
almost guarantees that innovation will stop and that the
acquisition will be much less successful than it could have been.

128

Chapter 3: Marketing

City Slickers Marketing
I have done a fair number of consulting projects for EDA startups
and a lot of them start out with what I like to call “City Slickers
marketing”, named after the movie City Slickers. For those of
you who have not seen it, there is an old cowboy, Curly (played
by Jack Palance) and a young advertising account manager Mitch
(played by Billy Crystal). The marketing is named for the
following conversation:

Curly: Do you know what the secret of life is? [holds up
one finger] This.
Mitch: Your finger?
Curly: One thing. Just one thing. You stick to that and the
rest don't mean shit.
Mitch: But, what is the “one thing?”
Curly: [smiles] That's what you have to find out.

When I arrive at startups where the CEO is the key technologist,
or even just an engineer by background, I tend to have a
conversation like this:

“What’s the one reason people should buy your product?” I ask.

“One reason, I can give you twenty,” the CEO replies.

Technical people (and I am one, so this is a lesson I had to learn
the hard way too) tend to overvalue technical features in a
product and assume that if the technology is good then the
product will sell itself. And if one feature is a good reason to buy,
then lots of features are even more of a reason.

But the world doesn’t work that way.

A colleague recently reminded me about a store in San Jose that
sold “Fine art and bicycles”. Presumably a fine art dealer who
also was a keen cyclist. This is an extreme example of how
multiple features are not necessarily additive and how you have

 129

to take account of the way the customers look at the world. There
simply isn’t a “fine art and bicycle” market that you can be the
leader of. In fact, even if you are the best art shop in the area,
selling bicycles too isn’t a plus, it detracts from your message.

A lot of early marketing in a startup is working out what the
single compelling reason is for a customer to engage with you.
And it has to be just one (or maybe a couple if you can segment
the market a bit). The early stage of engaging with customers is
sometimes referred to as throwing mud against the wall and
seeing what sticks. You can’t find the single compelling reason
as an intellectual exercise, you have to get out and engage with
customers and work out where your technology solves problems
the customer cares about.

When I arrived at Ambit, I learned that our value was that we
produced faster circuits than Synopsys. And we had better time-
budgeting. And we could run top-down. And we ran faster. And
our pricing was bundled. And physical synthesis was in
development. And…and…and.

It was once we realized that we could handle large million gate
designs in one gulp that we really started to get traction. The
other things were all true, but none of them was compelling
enough to get a company to engage with a startup. But if you had
a million gate design and you couldn’t get it through Design
Compiler, then you were calling us to take your money.

This is different from the elevator pitch for investment purposes.
Ambit was “Design Compiler only better” but that isn’t focused
enough for marketing a product or driving a detailed
development roadmap. You have to find out the one thing.

Intel only needs one copy
It is obvious that companies make money in EDA only if they
sell enough software. One rule of thumb is that EDA companies
thrive if each salesperson brings in $2M per year, and they don’t
if they only bring in less.

130

But enough software really means enough hours of use of the
software. For a large EDA company, most of the money comes
from a relatively small number of large customers, and they
optimize their use of licenses in server farms, sharing licenses
world-wide and so on.

But enough hours of use of software in turn really means that
either the software must run for a long time (like place and route
or RET decoration) or else that customer engineers must sit in
front of it for a long time (like a layout editor).

Other tools suffer from what I call the “Intel only needs one
copy” problem. They have a hard time building license demand
naturally. This is less of a problem in a startup, who are quite
happy in the early days to sell one copy to everyone, but to get a
good growth trajectory it is necessary to build on the beach-head
of those first licenses and proliferate widely into at least some of
the accounts.

If license demand isn’t built naturally then it becomes necessary
to attempt to do unnatural things like try and charge per tapeout,
or try and license on a per-named-user basis, or try and charge a
royalty. These are all possible but at the very least the sales cycle
will stretch out for a startup, and it will run out of cash, or for a
large company it becomes too complex to include a weirdly
licensed tool into a large contract (which, incidentally, is also one
reason that OEM deals never work in EDA).

This is one of the big challenges of the ESL market. The tools are
only needed occasionally, don’t run for a very long time and
don’t require users to run them interactively for long periods.

Bottom line: it is really hard to sell a tool with an unexpected
business model, which for EDA means some sort of floating
license for a period of time. A nice analogy is the restaurant
business. When you go to a restaurant you expect to pay
depending on what dishes you order. That’s how restaurants
work. But in fact most of a restaurant’s costs are fixed: the rent,
the employees’ salaries, utilities, advertising. So rationally a
restaurant might charge by the minute no matter what you eat.
That changes things a bit (caviar is cheap, that espresso after
dinner is really expensive) but even so I suspect you’d have a

 131

hard time running a business that way. It’s just not what the
customers expect.

Super models
Xxxxx

I about open source software in EDA, or rather about the lack of
it. One area where there is some free and open source software,
as well as closed source software, is on that boundary between
EDA for chips and software tools for embedded systems, namely
what seem to be called virtual platforms or virtual prototypes (I
hate the name “virtual prototype” since it is a chip-centric view
of the world implying that the platform is useless once the chip
shows up).

Virtual platforms, while they have some utility for chip
development, are largely sold to software developers to allow
them to do software development more productively and earlier
than would be the case if they had to use the real hardware, which
comes along too late and is too opaque. The performance of the
virtual platforms is almost unbelievably high, running ARM or
PowerPC code binaries at hundreds of MIPS on an off-the-shelf
PC, often similar to the performance on the actual hardware.

I have worked for both VaST Systems Technology and Virtutech
who both supply tools into this market. They charge per seat in
the region of $5-25K/seat/year. In the IC design world these price
point are low; in the software development world they are very
high. Synopsys with its Virtio acquisition is also in this market.
Imperas is a startup founded by Simon Davidmann in the UK to
enter this market specifically to address the difficulty of
programming multicore chips. Driven by a mixture of lack of
funding but also a deliberate change of strategic direction, about
a year ago they made their environment free and created Open
Virtual Platforms (OVP).

I met Simon at DATE last year where this was announced, and
asked him why he did it. Firstly, he said that he is a big fan of
Kim and Mauborgne’s book Blue Ocean Strategy, changing the
rules and competing where the competition isn’t. But the thing

132

that really brought it home was discovering a fact about QEMU.
QEMU is a similar type of simulator developed largely by one
person, Fabrice Bellard, and distributed free (and open source).
The fact Simon discovered is that QEMU has more Google hits
than Synopsys.

Think about that for a moment: a single free product that most of
you have never heard of in a neighboring space to IC design has
more web references than the EDA market leader has for all their
products put together (they are almost identical at around 1.7M
apiece when I looked just now).

Simon also realized that companies made more money from
verification tools around simulators than selling the simulators
themselves. So for Imperas the key would be to get people using
the simulator so that there was a base into which to sell higher
value tools. It is too soon to tell whether the strategy is working
fully, but MIPS and Tensilica are both distributing models on the
OVP foundation.

When I was at VaST and Virtutech it was clear to me that the
market would be limited so long as models were not being
supplied by the component vendors, either at the same time as or
in advance of silicon. I always used the analogy of Synopsys in
the early days. At first Synopsys themselves developed the ASIC
vendor libraries necessary for synthesis. Bob Dahlberg, who ran
the group, told me that at one point he had well over 100 people
doing this. Then the ASIC vendors realized that it was their job if
they wanted the job done how they wanted it done when they
wanted it done. A year later Synopsys disbanded the group
completely since ASIC vendors had completely taken over the
task.

This is starting to happen in the automotive industry around
VaST’s technology, For some time the main suppliers into the
automotive industry (NEC, Renasas, Infineon, Freescale and
others) have supplied processor models for VaST’s environment.
NEC America is announcing today that they will be distributing
complete virtual platforms on VaST’s foundation technology into
the automotive industry, going beyond simply providing
processor models. Software engineers in tier-1 suppliers
(automotive-speak for people like Delphi, Visteon and Denso)

 133

and OEMs (automotive-speak for car companies like GM, BMW
and Toyota) will be able to develop their software without having
to wait for silicon to be available and in a much more productive
environment than the real electronic control unit that will
eventually ship in the cars.

However, I think that component suppliers will continue to
remain reluctant to develop models for the virtual platform
ecosystem while there are limited standards for interoperability
or, as an alternative, a de facto winner in the same way as
Synopsys was clearly the early winner in synthesis. Even a
company like Freescale, which distributes VaST models into the
automotive industry also distributes Virtutech models into the
communication (think router and base-station) industry, which is
clearly not optimally productive.

The situation where OVP, VaST, Virtutech, Virtio, QEMU,
Bochs and others all have incompatible virtual platform
environments is not really sustainable. SystemC provides some
standardization around modeling of peripheral devices where
performance is not critical, but processor models depend heavily
on the underlying simulation technology to get their blazing
performance.

The other alternative is native cross-compilation environments. If
you develop software for the iPhone Apple supplies a Mac-based
iPhone simulator. It is fast but people complain about its
accuracy especially for graphics. But presumably Apple decided
it was not worth using true virtual platform to get the accuracy at
some loss of performance, or maybe they didn’t even know just
how fast simulation technology can be. Also, it is not so much
iPhone application software but the call processing and low level
software that absolutely requires a high accuracy platform.

It will be interesting to see how this all plays out.

134

Why does EDA have a hardware
business model?
EDA really started back in the 1970s (late 60s in fact) with
companies like Calma and Applicon. They drove the first EDA
transition from cutting rubilith, red sticky plastic that was
physically cut with X-acto knives, to digitizing the input and
generating pattern-generation tapes for automated mask-making
equipment. One legacy of this era remains with us today:
Calma’s system was called the Graphical Design System or GDS,
and the second generation (32-bit!) was called GDS-II. Normally
it stored its data on disk but it had a format, called “stream
format” for writing the data out onto magnetic tape. The disks
were too small to keep the designs there permanently. This
format, GDS-II stream format (or often just GDS-II or GDS) was
the standard for decades for moving layout data between systems
and from design environment to mask shop. It is still not dead
although it is definitely coughing up blood. The transition to
Oasis or other formats has gone much slower than expected.
Everyone supports GDS-II and so it is the least-common
denominator format.

Calma and Applicon initially thought of themselves as hardware
companies. They sold computers. Calma was actually a Data-
General minicomputer (it’s nothing directly to do with EDA but
if you’ve never read it, you must read the book Soul of a New
Machine about development of the 32-bit version). The business
model was the same business model as most hardware was sold:
you bought the hardware, digitizers, screens and so on. And you
paid an annual maintenance contract for them to keep it all
running which was about 15-20% of the hardware cost per year.
The software was simply bundled into the price. This was before
the days of a separate pure software industry; almost all software
only ran on one brand of computer the way cell-phone software
or digital camera software is sold today: you can’t buy it
separately, it’s bundled with the hardware.

The next generation of EDA was also hardware-based. Gate-level
design was dominated by the DMV: Daisy, Mentor, Valid. Daisy
built the Daisy Logician, Valid built the Scald-station (I think

 135

that was the name) and Mentor OEMed Apollo workstations
instead of building their own. The business model remained the
same: buy the hardware and pay an annual maintenance. I don’t
know if the software was even a separate line item.

It is hard to believe, but back in that period there was a worry in
EDA that as the hardware costs came down then software costs
would have to come down too. It was hard to believe that
someone might pay more for software than the hardware on
which it ran. After all, they never had before. Today, when you
can run millions of dollars of software on a box costing a few
thousand dollars this seems comical. But go back to the cell-
phone software I mentioned earlier. Maybe one day we’ll be
paying $500 for good cell-phone software from an independent
market, and then buying a cheap phone for $10 on which to run
it. After all, that’s where the value increasingly is.

The next generation of EDA software, VLSI Technology (where
I worked), SDA, ECAD (that together became Cadence), Silicon
Compilers, SDL and other companies that I’m sure I’ve
forgotten, wrote software that was more hardware independent.
They would run on Vax (always) and one or more of those new-
fangled workstation thingies from Apollo (or Sun once they made
it to production). They would usually sell you the hardware if you
wanted, but you could just buy the software and run it on your
own hardware. The business model was the same old hardware
business model though: pay an upfront license and annual
maintenance of 15-20%. This was how we ended up at first with
a hardware business model for a software business.

The final change was the switch to the time-based license,
initially 3 year, that we largely have today. Essentially this is a
software lease. Gerry Hsu1 is usually credited with this. He told
me that he noticed that people like to lease cars so that they get a
new car every 3 years or so, and decided to see if you could sell
software the same way. It turned out to be a good idea and the
financial side of the business liked it since it gave very
predictable revenue. In any given quarter, most of the revenue
was business booked in the three years before, and only a small
amount from the new business booked that quarter.

136

Business is still done as a mixture of time-based licenses
(recognized over the period) and term business (recognized up-
front). But, as I said earlier, the mix is open to abuse and only the
savviest followers of the industry realize how critical the
percentage of ratable business is in trying to decide if an EDA
company is doing well or not. It remains tempting for an EDA
company to persuade a company to do that $10M deal as a term
license instead of a time-based license. The $10M is recognized
immediately and can fill an embarrassing $10M hole caused by
the lack of $100M of time-based bookings.
1 By the way, Gerry Hsu is sometimes portrayed as a bit of a
buffoon. But he was certainly extremely smart, and very
perceptive. Just somewhat ethically challenged. I worked for him
for 8 hours!

The arrogance of ESL
ESL, or electronic system level design, is a catchall term for tools
above the level of RTL. There are two primary aspects to this:
synthesis and verification of IC designs from representations
higher than RTL (usually untimed C or System-C); and tools that
do something to address development of the software component
of electronic systems.

I have no problem with the term ESL for the first of these
segments, synthesis and verification. There are several EDA
companies (Mentor with Catapult, Forte, Synfora, CriticalBlue,
AutoESL, Cadence C-to-silicon) providing synthesis and one
(Calypto) providing formal verification of this level of design.
Getting design productivity up higher than pumping out RTL
Verilog is necessary and these companies, despite their limited
success, are probably part of the solution.

But when EDA companies turn to the software space they look at
everything through their IC spectacles and assume that ESL
methodologies in the chip design world will have some part to
play in development of the software that runs on the chips. They
have IC bias. But the software component of electronic systems
is much larger and much longer-lived than the hardware (chip)

 137

part. ESL thinking that it will impact software development is the
tail trying to wag the dog.

I was at a keynote by the CTO of Cisco a couple of years ago. He
revealed that IOS, Cisco’s router software and operating system,
is 25 million lines of code and there are an additional 35 million
lines of scripts for testing it. Consequently the number one
priority for any chip being sold to go into a Cisco router is “don’t
break the software.” This is way ahead of anything to do with
chip area, performance, power dissipation and so forth. Indeed, I
heard (anecdotally, so this is hearsay) that Cavium, who have a
16 core MIPS processor, were unable to penetrate Cisco since
IOS isn’t multi-threaded enough to take advantage of all those
cores. The chip has no problems and is probably desirable in all
sorts of other dimensions but it breaks the software so game-over.

I once asked some embedded software developers at an electronic
system company what they thought about ESL. This was fairly
soon after I had joined VaST and still suffered myself from IC
bias. I was expecting them to say it was promising, or they hated
SystemC or something like that. Instead, they could only think of
‘English as a second language’ and had never even heard of ESL.
Almost no software runs directly on the bare chip in any case, it
is all intermediated by a real-time operating system such as Wind
River’s VxWorks, Green Hills’s Integrity or, increasingly, some
flavor of Linux (which includes OS-X on iPhone and Android on
the Google-phone). This makes direct software-hardware co-
design, where some of the code is optionally implemented in
hardware, much more complex. Pulling out a block of software
for synthesis into custom hardware (or for implementation on a
special data-plane processor) requires the stubbed out software to
make operating system calls to access a custom device driver that
can talk to the custom hardware directly. Automating that process
requires building not just the hardware, but the device driver and
other operating system scaffolding, as well as the stub back in the
original source code. Of course, that is completely operating
system dependent and so requires multiple implementations.

Software people simply don’t care how the chip was designed.
The models created as part of the hardware design process are too
slow by factors of thousands or even millions to be useful as part

138

of the software development process. But most importantly, the
bulk of the software payload for the chip already exists in the
form of previous versions of the product. Even a brand new
product like iPhone carried over a lot of software from the Mac
that was simply cross compiled to run on the iPhone’s ARM
processor.

Ferrari vs Formula 1
It used to be received wisdom that the way to get a good design
flow was for a semiconductor company to purchase best-in-class
point tools and then integrate them together themselves. I think
there were two reasons for this. First, the EDA companies had
grown from a lot of acquisitions so that’s what they had for sale:
good point tools that were poorly integrated. Second, they were
selling to CAD groups in an era when semiconductor was doing
well and CAD groups liked to justify their existence by doing lots
of evaluation (which point tool is best?) and then integrating
them (need lots of people).

For most people, this was actually not the best way to get a
productive environment matched to their needs. It is as if we all
had to buy cars the way a Formula-1 team does, buying the best
engine, the best brakes, the best gearbox and making everything
work well together ourselves at great expense. If you really need
to win a Formula-1 race then this is the only way to go. Even a
top of the line Ferrari is simply way too slow. But for most of us,
a Honda Accord is just fine, easier to use, cheaper to acquire, and
orders of magnitude less expensive to get and keep on the road.

Back in that era I was at VLSI Technology. When we spun out
Compass we had a Honda Accord in a marketplace where people
thought they wanted to build their own Formula-1 racecar.
Potential customers only wanted to benchmark point tools and
wouldn’t even attempt to benchmark an entire design flow. I’m
not even sure how you would. I don’t know how much better the
design flows that CAD groups assembled out of Cadence and
Synopsys point tools (along with a seasoning of stuff from
startups) really were. And neither does anyone else. They were
certainly incredibly expensive in comparison. Before the spinout,

 139

I made several visits to semiconductor companies whose CAD
groups were bigger than VLSI’s Design Technology group. But
Design Technology developed all the tools, wrote all the source
code for synthesis, simulation, timing analysis, place and route,
physical verification, designed all the standard cell libraries,
created the memory compilers and the datapath compiler. Soup to
nuts. I think the only external tool in wide use was for gate-array
place and route, an area where VLSI was never that competitive
anyway (if you really wanted a gate-array, you went to LSI
Logic).

Magma was the first and only EDA company to build an
integrated environment. A CAD manager friend of mine told me
that they used Magma for everything they could. For the most
difficult designs they used Cadence’s Silicon Ensemble but they
could train someone on Magma in a day (and they weren’t
immediately hired away by the competition once they’d been
expensively put through training).

At the EDAC forecast meeting a couple of weeks ago, Aart de
Geus said he has been preaching that an integrated flow is
important for years. One difference he is noticing in the current
downturn, he said, is that this time executives are listening. Chi-
Ping Hsu of Cadence told me the same thing about the Cadence
PFI initiative which was well-received by power-sensitive
customers (is there another sort of customer?). PFI’s main thread,
the CPF standard, pulled together tools from across Cadence’s
product line along with standards that allowed external tools to
play in the flow too. Synopsys UPF does the same thing on their
side of the standard wars trench. People had managed to put
together power-aware flows before, lashing together point tools
with lots of their own scripts. But they were very buggy and
many chips failed due to trivial things like missing isolators or
not taking getting the timing right in multi-voltage blocks. This
seems to be a thing of the past now, although most designs are
still on the basic end of power saving (fixed voltage islands,
power-down) and not yet attempting the really tricky things like
dynamic voltage and frequency scaling (lowering the voltage and
slowing the clock when there is not much to do).

140

In the current hyper-cost-sensitive environment I think that the
pendulum will swing back the other way towards these more pre-
integrated flows and away from the integrate-your-own-point-
tools approach. It is also the only way that complex factors like
power, that cut across the whole design flow, can be
accommodated. The slowing of startup acquisitions by the majors
feeds into this, giving them time to put the effort into integration
without constantly gaining more things to integrate. The
integration has enormous value despite the fact that customers
have been historically reluctant to pay vendors for it. When I was
at Cadence we had some research showing customers spent $3 or
so on integration for every $1 that Cadence got. So customers
were paying for it, just not externally.

He who goes first loses
There’s a big debate about whether innovation occurs most in
small or large companies. I’ve always maintained that the
problem is a different one. I think it is clear that the engineering
groups of large companies are capable of creating leading edge
technology. Look at any franchise product like Design Compiler,
Virtuoso or Verilog simulation and see how it has advanced over
many generations spread over a decade or more in ways that
involve large amounts of innovation.

Where large companies have a problem is that they are very poor
at introducing new products into their channels. They have large
efficient sales organizations but those organizations are geared up
to closing deals with customers for products that the customer
already knows it wants. Unfortunately, when a brand new
product is introduced, there is an attitude among the salespeople
that “he who goes first loses.” But just as the Luddites really
were right that automatic looms would put them out of business,
the first person in a large company to sell a new product really
does lose. There will be problems with the product that will tie up
their application engineering resources for months, and
potentially a large multi-million dollar deal will be held hostage
to problems in a single copy of a hundred-thousand dollar tool.
Better simply not to sell the product until enough other sales have

 141

been made for it to be mature. But with every salesperson taking
this attitude, no sales occur.

This can extend even to products that are acquired. When
Cadence purchased Ambit’s synthesis product line, it was
obviously very strategic for Cadence salespeople to sell it
aggressively. If they were successful, it would start to cut off
money flowing to Synopsys and even if they were less
successful, they would force Synopsys to circle the wagons to
protect its Design Compiler franchise and so have less effort
available to put into threatening Cadence’s huge place and route
franchise. But Cadence salespeople would not. They had big
quotas at big semiconductor companies to close, and their focus
was to let Synopsys have synthesis and try and close a deal to
supply everything else. Selling synthesis against Synopsys
required extra effort and the payback of a few experimental
licenses would not move the needle on their quota.

Another product from my time at Cadence was called Heck (at
least internally, I forget what unmemorable name it got given
externally). It was a formal verification tool built on some
technology developed at Cadence Berkeley Labs. To tell the
truth, I’ve no idea whether it was any good or not, but since the
salespeople refused to try and sell it we never found out. In the
end Cadence acquired Verplex and the Conformal product line
that customers were already starting to adopt.

Very few products have been successfully introduced by large
EDA companies (once they have become large). By successful I
mean built up into $100M per year businesses. And by product I
mean a genuinely new product line, not a new version of an
existing product. The only one I can think of is Calibre. This was
developed over the years inside Mentor and somehow survived
being canceled for almost a decade before coming to dominate
physical verification. Cadence helped by making a huge misstep.
They tried to protect their Dracula franchise by making their
hierarchical DRC Vampire require incompatible rule decks.
Mentor had no such qualms and as a result the obvious upgrade
path from Dracula was to Calibre not Vampire.

Synopsys made PrimeTime a big success, but the story is
complicated by the fact that they acquired Viewlogic and with it

142

Motive, the market leader in static timing. They then shut down
Motive and transferred all its customers to PrimeTime. But
undeniably they did manage to get their salesforce to sell it.

So I think that it is not so much that large EDA companies are
incapable of innovation. They do it all the time. But their
salesforces are reluctant to sell any product for which there is not
already strong market pull. Marketing in EDA is unable to create
that demand either, which is a different story.

However, startups are different. The salesforce will sell new
products because the salesforce typically has precisely one
product to sell, and it is new. They are not really the same sort of
salesperson either. Startup salespeople are more like hunters
whereas large company salespeople are farmers. It seems to take
that combination of single mindedness in the salesforce and an
entire company whose success depends on getting those initial
customers to adopt the product. Once customers start to clamor
for the product, it is the moment for a large EDA company to
acquire the startup and the huge machine of their salesforce can
drive the bookings number up very rapidly.

All purpose EDA keynote
I’ve given lots of keynote speeches about EDA over the years.
You too can give your own keynote if you follow these simple
secret guidelines.

Ladies and gentlemen…

Moore’s law…blah, blah, blah. Show generic Moore’s law slide.
New challenges. Scary.

Design gap…blah, blah, blah. Show generic design gap slide.
Must close the gap. Scary.

Chips are getting bigger, more physical effects are becoming
important, wavelength used for lithography is not changing,
engineering productivity must increase.

The three mega-trends: drive up the level of abstraction for
greater productivity, drive down the level of detail since second-

 143

order effects are becoming first-order, and increase integration to
improve productivity.

So far everything has been completely generic. You could have
given the same speech a decade ago. If you did, it is a good idea
to at least update the years on your generic slides so they don’t
finish five years in the past. Now it’s time to get vaguely specific.
You’ll need to update the rest of the keynote at least every
process node. That’s only every couple of years so not too much
work.

Talk about big issues of the day that affects everyone. Power is
hot (or perhaps that should be cool) or how about process
variability, or impact of new lithography restrictions. If you talk
about power, talk about how power format standards (or at least
the one you support) will make everything straightforward. Don't
forget how committed you are to standards.

Drive up level of abstraction so that front-end designers are more
productive. Talk about the architectural level; nobody is quite
sure what it is but it is big picture so wave your hands a lot.
Maybe talk unconvincingly about need to take embedded
software into account. The audience knows nothing about it but
they have whole groups doing it, and they are bigger than the IC
groups, so it must be important. Talk about importance of IP and
doing design using much larger blocks. This is a good time to
talk about standards again and how committed you are to them.
System-C and transactional-level modeling are good names to
drop. Verification is 60% of cost of design. Tradeoffs need to be
done at architectural level for greatest effect, later in the design
cycle is too, uh, late.

Drive down level of detail so that we take into account new
physical and manufacturing effects we used to be able to ignore.
“You can’t ignore the physics any more” makes it sound like you
didn’t forget all the physics you learned in college. Designers
need to worry about process variability and will need statistical
timing tools to worry with. And after thirty years of pretty much
putting what we want onto masks we are not going to be able to
do that any more. Good moment to have scary pictures of the
difference in how layout looks on the screen to the mask to the
silicon.

144

Need for greater productivity. Next generation databases. If yours
is open, argue about why this is public spirited, sustainable and
green. If yours is closed, argue about how that enables your tools
to be more optimized and efficient. Everyone needs more
integrated tools. Nothing is fast enough so your tools will all be
multi-threaded one day. Soon. You hope. Flows are important.
Unless you only have point tools in which case talk about how
best-in-class point tools are even better than flows.

You are short on time so slip in a quick mention of
manufacturing test. Who knows anything about it? But chips
have to be tested so talk about scan. Or BIST. Or ScanBIST.
Then there's packaging and printed circuit boards. They are
probably important too, but everyone in the audience is a chip
designer. Best not to think too much about them.

They don’t design FPGAs either, but good to mention them to
show you understand how widely they are used. But there’s no
money in EDA for FPGAs so best to gloss over exactly what
capabilities you have.

Wrap it up and get off the stage. We are working hard on all
these areas. We are your partner for the future.

No sex before marriage in EDA
In most businesses, every company doesn’t feel the need to make
every product that it sells. When you buy a car from General
Motors, they don’t make the ABS system themselves, they buy it
from Delphi or from Bosch. When DEC came out with the Vax,
they didn’t feel the need to make their own graphics terminals,
they bought them from Tektronix and re-badged them.

This is known as an OEM deal. OEM stands for “original
equipment manufacturer” and refers to the fact that General
Motors is the manufacturer of the original equipment (the car)
and the other parts are treated by regulation as if GM had made
them themselves. Indeed, they may even badge the part with their
own logo and make it hard to find out just who is the real
manufacturer.

 145

OEM in other industries has come simply to mean re-selling stuff
created by another company. In EDA software, for example,
almost everyone’s schematic viewer is actually a product from
Concept Engineering in Germany.

But this sort of deal, where a component of the product is
incorporated from an external company, seems to be the only sort
of OEM deal that works. Once the deal moves up to the level of a
whole tool then OEM deals almost never work in EDA. There
seem to be two reasons for this, one on the customer side and one
on the vendor side.

On the customer side, if you are buying a product from bigEDA
and you know that it really comes from littleEDA, then why
would you not want to deal with littleEDA directly? If you have a
problem, you know that bigEDA is just going to pass the question
onto littleEDA anyway, and even before you buy it there may be
some channel conflict when both bigEDA and littleEDA are
competing for your business, and for sure the littleEDA sales
team knows much more about the product. It just doesn’t make
too much sense to flow your dollars to littleEDA through
bigEDA, and flow their support back through the bigEDA
support channel.

On the vendor side, bigEDA wants to do big deals with their
major customers. They’ll give you all your EDA software, or a
good part of it, for all your EDA budget, or a good part of it.
OEM deals usually require a per license payment from bigEDA
to littleEDA but that doesn’t fit well with a deal where
technically the semiconductor company may be getting unlimited
or a large number of licenses for a bundled sum. There is simply
no way to calculate an appropriate number of license fees to pay
littleEDA, and the need to do so makes the deal more complex
and so the salesperson simply drops the OEM product as not
worth the usually minimal increment in bookings.

Finally, there is a strategic reason that makes OEM deals
unattractive. You’d think that an OEM deal would be sex before
marriage. If the deal works well then bigEDA can buy
smallEDA. The trouble is, if the deal works well then another big
EDA company might make a move. And either way, bigEDA is
going to have pushed up the price of smallEDA and is going to

146

have to buy back their own revenue. There’s no sex before
marriage in EDA. If smallEDA is the right company then marry
them immediately before they get more expensive.

Standards
I was once at a standardization meeting many years ago when a
friend of mine leaned over and said, “I tend to be against
standards, they just perpetuate other people’s mistakes.” I think
this is really a criticism of standardizing too early. You can only
standardize something once you already know how to do it well.

In many businesses, the winner needs to be clear before the
various stakeholders will move. Standards are one way for a
critical mass of companies to agree on the winner. For example,
Philips and Sony standardized the CD for audio and since it was
the only game in town it was adopted immediately by vendors of
CD players, the record labels knew which format to put discs out
in, the people building factories to make the CDs knew what to
make. A few years earlier there had been the first attempt to
make videodiscs, but there were three or more competing
formats. So everyone sat on their hands waiting for the winner to
emerge, so in the meantime everything failed. When everyone
tried again a few years later, the DVD standard was hammered
out, it was the winner before it shipped a single disk, and the
market took off. This was a lesson that seemed to have been lost
in the HD-DVD vs BlueRay wars, although by then disks were
starting to be irrelevant and downloading and streaming movies
is clearly going to be the long-term winner.

EDA is an interesting business for standards. Since you can only
standardize something you already know how to do, standards are
useless for anything leading edge. By the time we know how to
do something, the first batch of tools is out there using whatever
interfaces or formats the initial authors came up with.
Standardization, of the IEEE variety, lags far behind and serves
to clean up the loose ends on things where there are already de
facto standards. Also, EDA market expansion is not going to be
driven by standards in the way that CDs were. Synopsys won
synthesis (as opposed to Trimeter, Silc, Autologic and others)

 147

and so .lib and sdc became the standards, not the other way
round. If all the other EDA companies had created a competing
standard to .lib, nobody would have cared. It is the winningness
not the standardization that is important.

Once the first tools are out there for some new technology, all
using incompatible formats, then standard wars begin. The
market leader wants its standard to become the de facto standard
adopted by everyone. It is cheap for them since they don’t need
to make changes; it is expensive for everyone else since they
need to change their software to read the standard and probably
make some internal changes so that their tool’s semantics match
those implicit in the standard. Even if an IEEE-style
standardization effort takes place, it is too slow. By the time the
standard comes out it has often already been superseded by
upgrading of the formats by the market leader to accommodate
the realities of the process nodes that have come along in the
meantime.

Customer behavior is very two-faced too. Every semiconductor
vendor will talk about the importance of standards with a long
solemn face. Especially their CAD managers. But, at least for
their leading edge chips, they won’t put any money behind those
statements and they will buy the best tool for the job whatever
standards it does and does not support. Designing leading-edge
chips is hard enough without worrying about whether some
abstract standard is open enough.

Of course, once a market matures then supporting the de facto
standard is an important part of “best tool for the job”. When I
first started in EDA, Calma still maintained that GDSII was a
proprietary standard that nobody else was allowed to read.
However, every Calma system shipped with a file describing the
format, so I took the legally dubious step of reading that file, and
a couple of days later we could read chips into the VLSI
Technology layout editor. A layout editor that didn’t read GDSII
wasn’t really a layout editor no matter how good it was at editing
layout.

So expect customers and EDA vendors going forward to talk a lot
about how important standards are. But expect them to produce

148

and buy the best tool for the job and the standard to emerge from
the competition for that honor.

Semi equipment and EDA
I had lunch with Lance Glasser a couple of weeks ago. He used to
run about half of KLA-Tencor’s semiconductor equipment
business (and I did some consulting for him back then). We got
to discussing why EDA and semiconductor equipment are so
different.

At first glance, there are a lot of parallels with EDA. Most
notably the same customers, the same technology treadmill and a
small number of large companies without a lot of differentiation
in their product offerings. But there are big differences. For
equipment, the innovation often comes in the big companies,
which have shown themselves capable of both developing
innovative technology (involving not just optics and hardware but
also a huge amount of complex software—60% of the engineers
at a typical equipment company are software and algorithms) and
also getting that technology successfully into their channel. Big
EDA companies are not good at that. Why the difference?

Semiconductor companies know that they need both new
equipment for the fab and new design tools for their design
groups in order to bring a new process node online. In general,
the most advanced fabs (such as Intel or TSMC) work very
closely with the equipment vendors on the spec of new
equipment and then on ensuring that the equipment works
properly in the new environment. If you think it is hard to get
your hands on a netlist for a next generation design, try getting
your hands on some test wafers when most of the equipment does
not yet exist. And when the equipment is ready for production,
the fabs have no expectation that they will get it for free in return
for this work, though they will certainly drive for deep
discounts. As Lance said, sometimes the customers think “JDP”
stands for “jumbo discount program.”

One big difference is the way equipment is sold. Of course it is
hardware not software, which means that neither the salesperson
nor the buyer know the exact incremental cost and so what the

 149

profit margin is at any particular price, although Intel actually
invests in a “should cost” program to work out what they think a
piece of equipment should cost to give them better negotiating
leverage.

Another big difference about hardware is that it has lead-time. If
you want to open your fab by such-and-such date then the
equipment needs to be ordered by a much earlier deadline. This
makes the negotiation much more balanced: the equipment
vendor can delay knowing that the clock is ticking. Yes, they
want the order but the fab absolutely has to close a deal by a
given day. The only time a similar situation would exist in EDA
is if a big semiconductor company were stupid enough to leave
negotiating a new deal until right up to the last day of the old deal
when all its existing licenses would expire. Then the EDA
company could just delay too. This advantage had decreased in
recent years as the customers place a larger percentage of their
orders within lead time (to try to transfer the inventory risk to the
vendor), but it is still not a bad as with software.

The other difference about equipment is that it really is a one-
time buy, a true “permanent license.” You buy a piece of
equipment this year and you pay for it this year. Next process
generation you don’t “rebuy” all your existing equipment with
just a soupcon of new stuff such as better optics. But with
software you do. So even though a new piece of equipment may
contain a lot of the previous generation in its design, the
semiconductor company doesn’t expect to get that bit for free on
the basis that they already paid for it in the previous generation.

The way EDA works, even the old days when EDA still had a
hardware business model and sold permanent licenses, there was
always a debate as to how much of a new product was
incremental (thus expected to be included as part of maintenance)
or was a new tool (thus required a new permanent license).
Today, with time-based licenses, much of a salesperson’s quota
may be “re-selling” the existing capability. When so much is
riding on just keeping the customer on-board using the existing
tools, the salesperson becomes very risk averse about selling new
products. Unless the customer insists on buying, it is only a small
amount of incremental revenue for possibly a large amount of

150

incremental problems. From the salesperson’s perspective better
not to include it in the deal at all. For the EDA company as a
whole, in the short term and looking at just that one deal, this is
rational. It is only in the longer term and in the aggregate that not
getting new products into the channel is a slow death. Equipment
companies often structure their sales incentives around
penetration, share, and adoption of new products. More
insidiously, this style of business (all your money for all your
needs satisfied) means that EDA does not attempt to sell to value,
does not attempt to increase the meaning of “all your money.”
Customer companies, who know the value, make it hard discover
for the EDA company. For example, it is hard to find out how
heavily individual tools are used. Equipment for 45nm is harder
to engineer than it was for 180nm and so everyone expects it
might cost more. (It is not all one-sided, EDA companies don’t
have to worry about wafer size changes—the equipment industry
still hasn’t made back the cost of changing from 200 to 300 mm.)

An equipment salesperson is more like an EDA startup
salesperson. If he or she doesn’t sell new equipment, there isn’t
anything else to sell. Very little ramping of production goes on
except in the latest processes. There is almost no market for new
90nm steppers today, for example (there’s probably a second-
hand market though, they used to advertise that sort of thing on
billboards along 101 between San Jose and San Francisco).

Little differences in the details seem to have a huge effect of the
business. The fact that there is no concept of a software upgrade
in equipment, the fact that hardware is solid and has real cost,
that it has lead-time, has meant that equipment companies cannot
go to zero on pricing, have to increase prices since their costs
increase, and have to work closely with early adopters to mature
the product. EDA companies have given up trying to sell the
value of new products and so have given up trying to grow their
customers budgets. So they don’t grow, and EDA is probably
smaller than it was five years ago (if we exclude IP).

 151

It’s like football only with bondage
Woodrow Wilson once said “If I am to speak ten minutes, I need
a week for preparation; if an hour, I am ready now.” Being
succinct is really important when trying to close some sort of
deal, whether it is a CEO trying to convince and investor or a
salesperson trying to convince a customer. And as the Wilson
quote shows, it is really hard.

Analogies are a great way of explaining things. You probably
heard that movies are often pitched in a ten-second bite “It’s like
xxx only yyy.” For instance Alien: “It’s like Jaws, only in space.”
Or Chicken Run: “It’s like The Great Escape only with clay
chickens.”

Investors can be pitched this way too. They typically don’t really
understand the technology they are investing in so it’s no good
talking about how great your modifications to Kernighan-Lin are
for next generation 32nm placement in a restricted design rule
environment. Better to say “It’s like Silicon Perspective but
taking modern process limitations into account.”

When I was at Ambit, we had a product called PKS (physically
knowledgeable synthesis) which was the first synthesis tool that
took physical layout into account in timing. But it was hard to
explain to people why this was important back then, everyone
was used to synthesis with wire-models and didn’t really
understand the limitations. I found that the best way to explain it
was that it was like trying to find the distance you’d have to
travel to visit 4 cities in the US. It clearly makes a big difference
if you know the cities are in LA, Miami and Seattle, as opposed
to LA, Phoenix and Las Vegas. If you know nothing about where
they are, which is the wireload model case, all you can do is use
some sort of average and say it is 1500 miles. Always. This
analogy also served to overcome the objection that we were not
using the precise placement that would end up after physical
design. If the cities are LA, Miami and Seattle, it doesn’t matter
that much that the Seattle visit was actually to Portland; it’s close
enough and a lot better than assuming Portland, Maine. I found
that with this analogy people would immediately understand the

152

reason for what we were doing and the limitations in the old
approach.

Another analogy I like is in multi-core. Forget all the
programming but just focus on the infrastructure. Everything
assumes, or rather assumed, a certain model of programming: the
programming languages, the hardware, the operating systems.,
the way programmers wrote code assuming that future computers
would be more powerful not less It’s like containerization. The
whole shipping infrastructure of the world is built on a standard
sized container. Multi-core is as if someone suddenly said that
you couldn’t have container trucks any more, for each big truck
you used to have you now get a dozen FedEx delivery vans. In
fact you can have millions of them, they are so cheap and getting
cheaper. The trouble is that the infrastructure doesn’t work like
that. The carrying capacity of millions of FedEx trucks might be
much more than the container trucks, but the legacy stuff all
comes in containers. It just doesn’t do to look only at the total
carrying capacity.

A company I’m on the board of, Tuscany Design Automation,
has a product for structured placement. In essence, the design
expert gives some manual guidance. But people are worried at
how difficult this is since they’ve never used a tool that made it
easy. It really is hard in other tools where all you get is to edit a
text file and don’t get any feedback on what you’ve done. The
analogy I’ve come up with is that it is like computer typesetting
before Macs and PageMaker and Word. You had text-based
systems where you could put arcane instructions and make it
work but it was really hard and best left to specialists. Once the
whole desktop publishing environment came along it turned out
that anyone (even great aunt Sylvia) could produce a newsletter
or a brochure. It was no longer something that had to be left to
typesetting black-belts. And so it is with structured placement.
Once you make it easy, and give immediate feedback, and people
can see what they are doing then anyone can do it.

 153

Pricing. Vases and coffee pots
My father-in-law was an executive at Wedgwood and
responsible, among other things, for pricing every piece of china
they made. Wedgwood has recently been run into the ground by
Waterford Crystal who had acquired it, and it is now in
administration (roughly chapter 11), but that is another story.

Anyway, a Wedgwood coffee pot sold for $80 (I’m guessing
these numbers). It is a complicated piece to make consisting of a
body, a handle, a spout, a lid and a little piece that goes inside to
stop all the coffee grounds going down the spout. However, if we
throw away the lid, don’t bother to put on the spout, forget the
handle and the little filter piece then we have a much simpler
item. It’s a vase. It sells for $100. Paradoxically, the vase, which
is much simpler to manufacture, has higher value to the consumer
and so sells for a higher price.

It is important not to assume that the value to a customer of every
product is a fixed industry markup over its cost. That will be true
in a competitive mature market since any differentiation that
leads to a higher price will get copied and competed away, but it
is not true when products are differentiated. That is why it is so
important to have differentiation, otherwise you are stuck selling
silicon at a small markup to cost and you probably are not the
lowest cost supplier. You either want to be Walmart (lowest cost
supplier) or Whole Foods (lots of differentiation), not Safeway.

When I was at VLSI Technology in the late 1990s, one of the
things I did was help run the strategic planning process for
VLSI’s communication business (mostly GSM chips). We had a
relationship with a French company called Wavecom that had a
GSM software stack and a GSM radio design. VLSI made the
baseband chip. At the time, understanding the GSM standard well
enough to build a baseband chip was a big differentiation, and we
were one of a couple of semiconductor companies with a
standard product, which gave us some pricing power. But it was
easy enough to see that, just as had happened in the PC chipset
business, lots of competitors would enter the market and it would
become a cutthroat cost-plus business. Digital design, no matter
how complex, is not defensible for long. I told our

154

communication group that we had better have a plan for
acquiring Wavecom (which didn’t want to be acquired, certainly
at any price we could afford) or else we should have a plan for
finding a new software/RF partner since that is where the
differentiation would move. Otherwise we would eventually get
pushed out of the market. In the end Philips Semiconductors
acquired VLSI in a hostile takeover, and they already had a
software stack and RF and so the problem got solved that way.
But it wasn’t a message the communication division wanted to
hear since building those chips was so hard they wanted to
believe that it would continue to be differentiation for a long
time.

Software has a disadvantage over hardware in that the
manufacturing cost is known. It is basically zero. All the cost of
software is really an R&D cost being amortized over product
sales. It is like a pharmaceutical business in that sense, pills that
are incredibly expensive to formulate but incredibly cheap to
manufacture. But unlike the pharmaceutical business where IP
protection works, there is very little that can be done in practice
to keep a product proprietary. It is thus hard to keep
differentiation and pricing power for long. And hard even when
there is no competition. Hardware accelerators such as Cadence’s
Palladium or Eve’s products have a large hardware cost and sell
for a high price. But despite that proven value, you know that if a
software product had the same performance it would not sell at
the same premium price point.

Of course these things are relative. In most software businesses,
the prices we get for EDA tools are prices that other companies
dream about. This is a challenge as the ESL market grows and
starts to meld with the embedded software market. We may think
a Verilog simulator is cheap, but it is a lot more expensive than a
compiler or a debugger (even ignoring open source where the
price is often zero). But that is a topic for another day.

The main implication for EDA is that the value of a product is
determined by the customer not by the EDA company. There is
plenty of pressure from customers to reduce prices on non-
differentiated products, but very little from the EDA companies

 155

to get more return from the strongly differentiated products. Too
many coffee pots and not enough vases.

A real keynote: move up to software
I gave a dinner keynote at the Electronic Design Process 2009
meeting in Monterey last week. However, I’d already made the
mistake of giving the secret recipe for any keynote speech (and,
by way of confirmation, I received an email from Aart assuring
me that his keynotes had rigorously followed the outline for the
last fifteen years!). I would have to come up with something
different.

So this is my current keynote. I focused on what I thought were
the four big opportunities right now. In fact, in a funny sort of
way, they are different facets of the same opportunity.

The first is that semiconductor companies now ship a lot of
software along with their silicon, but by and large have not found
a way to turn that into premium margins. They still ship margined
up silicon and regard software as a marketing expense that is
required to be in place for anyone to buy it. Semiconductor
companies now have more software engineers than design
engineers so this is backwards. It is the silicon that has little value
and should be thrown into the deal.

The second opportunity is what I call “Coore’s law.” Just as with
Moore’s law described how the number of components on a chip
was increasing exponentially, the number of cores on a chip is
increasing exponentially. We are still at the fairly flat part of the
curve so it’s not that obvious yet. But, as I’ve said before, the
semiconductor industry has taken their power problem and
dumped it on the software industry in the form of multi-core. But
they completely underestimated the impossibility of software
solving this problem in a reasonable timeframe, and some people
contend it will never be solved (the existence of our brains as a
counter-example notwithstanding). And that is for new code
written in new languages with new tools. Most code is legacy
code, and legacy code is often what I’ve heard called “stiff
ware.” Technically it is software and malleable. In practice,
nobody understands it well enough to make extensive changes

156

(and in the worst cases, not all the source code has been properly
preserved). Anyway, incremental improvements to solving the
multicore challenge are the next opportunity.

The third opportunity is that EDA business models (sell lots of
expensive licenses) don’t scale into the software world, or even
the ESL world for that matter. In the same way, IBM had to learn
the hard way that mainframe business models don’t scale into the
world with ubiquitous computing and ubiquitous networking. A
lot of ESL has the problem of “Intel only needs one copy” and
the software world suffers from open source killing innovation.
Open source is clearly the most effective approach to software
development, but it does best at copying things and has a poor
track record of true innovation (if you are writing for yourself or
copying, then the spec is easy). The obvious analogy here is with
music. There will never be another Michael Jackson (and there’s
some upside to that too, of course) and Thriller will forever be
the best selling album. Nobody will make serious money selling
music itself and they can only make money by selling stuff
associated with music that is harder to copy: clothing, concert
performances and so on. In just the same way, hardware
companies ride on products like Linux, recovering any
development they do for the community (if any) through their
hardware margin. Nonetheless, the opportunity is to move EDA
from just plain IC design up to these higher levels and find a
business model that makes it work.

Finally, the fourth opportunity is to look still further afield and
take in the entire design process, in a similar way as PLM
companies like IBM, PTC and Dassault do for mechanical, but
with considerably less technology on the design side. Take the
“E” out of “EDA”. By taking the entire design problem, the
business model issues associated with software might be side-
stepped. And all four challenges are really about software.

In summary, the challenge is to expand from EDA as IC design
(which is the most complex and highest priced part of the market)
to design in general, in particular to take in the growing software
component of electronic systems. It’s a technology problem for
multicore, but most of the rest is a business challenge

 157

Competing with free EDA software
Chris Anderson (editor of Wired, owner of TED, author of The
Long Tail) has a new book called Free coming out in July. One
thing that he emphasizes (at least in his articles on the subject,
I’ve not seen the book itself) is that “free” is very different from
“really cheap.” If you are an Amazon Prime subscriber, whereby
you get free 2-day shipping once you’ve paid an annual fee, or if
you are an iPhone user whereby you get unlimited data access,
you know that this changes your behavior. People instinctively
know this when they sign up for monthly gym membership; most
people would be better just paying the one-time fee each time
they go but they know (or at least hope) that “free” will change
their behavior and they will use the gym more.

Websites are increasingly “free,” meaning either that they
haven’t yet found a business model, like Twitter; or that they are
advertising supported, like EDN or plentyOfFish; or that they
don’t attempt to make money on the website and exist for some
other reason, like Wikipedia or Moveon.org.

Alternatively, many websites use what has become known as the
“freemium” business model. A large part of the website is free,
but if you want to get to the best stuff or want more then you
have to pay. For example, flickr is free but if you want a lot more
storage you have to pay; almost all games have some initial
levels free so that you can start playing and only need to pay once
you get in deeper.

One challenge in EDA is that the big companies bundle a lot of
tools together for a single price, so effectively all of the tools are
free (in the same way that going to the gym is free once you’ve
paid the subscription). As planned, this makes it hard for small
EDA companies to compete. Their tools haveto be so much better
that customers will pay for similar tools that they already own.

I had lunch with Paul Estrada (a.k.a. Pi) a couple of weeks ago.
He is COO of Berkeley Design Automation (which is obviously
located in…Santa Clara). They produce a SPICE-accurate circuit
simulator AFS that is 5 to 10 times faster and has higher capacity
than the big company SPICE tools. For designers with really big

158

simulations, that is a pretty compelling value proposition (over
lunch instead of overnight). But for designers with smaller
simulations and access to unlimited big company SPICE
simulators, it is harder to convince them to even take a look,
never mind open their wallets. However those slow big company
simulators still tie up hardware (and circuit simulators are both
CPU and memory intensive, so need the good stuff) and they
keep expensive designers busy waiting.

So Berkeley recently introduced a block-level SPICE tool, AFS
Nano, that sells for only $1,900. This literally saves customers
enough in hardware to justify the purchase, even if they have a
pile of big company SPICE simulators stacked up on the shelf.
Oh yeah, and those expensive designers can get back to work. It
is not quite the freemium business model (which would require
giving AFS Nano away) but it is close. Like with the other
models, Berkeley hopes the near-freemium AFS Nano will get
customers interested in their big tools.

Another interesting book is What Would Google Do? by Jeff
Jarvis. He examines lots of businesses and wonders what they
would look like if you largely gave away everything to make the
user experience as good as possible, and then found alternative
ways to monetize the business.

EDA software is notoriously price-inelastic. It doesn’t matter
how cheap your tool is, it has a relatively small number of
potential users. You might steal some from a competitor, but
overall the number of customers is not driven by the price of the
tools in the same way as, say, iPods. So a free business model is
unlikely to work unless there is a strong payment stream from
somewhere else such as a semiconductor royalty. There is also a
high cost to adoption in terms of training, setting up technology
files and so forth meaning even “free” EDA software isn’t really
free once you get it into use. So it is unclear what Google would
do in the EDA space, other than not enter it since it is too small to
be interesting to them.

 159

It’s turtles all the way down
According to Steven Hawking, Bertrand Russell once gave a
public lecture on astronomy. He described how the earth orbits
around the sun and how the sun, in turn, orbits around the center
of a vast collection of stars called our galaxy. At the end of the
lecture, a little old lady at the back of the room got up and said:
"What you have told us is rubbish. The world is really a flat plate
supported on the back of a giant turtle." The scientist gave a
superior smile before replying, "What is the turtle standing on?"
"You're very clever, young man," said the old lady. "But it's
turtles all the way down!"

Electronic systems are a bit like that. What is a system depends
on who you talk to, and a system to one person is built out of
components that are themselves systems to someone else. Pierre
Paulin neatly defined system-level as “one level above whatever
level you are working at.”

In the EDA and semiconductor world we are used to talking
about systems-on-chip or SoCs. But the reality is that almost no
consumer product consists only of a chip. The closest are
probably those remote sensing transport fare-cards like
Translink now creeping around the bay area (finally, well over 10
years after Hong Kong’s Octopus card which was probably the
first). They are self-contained and don’t even need a battery (they
are powered by induction). Even a musical birthday card requires
a battery and a speaker along with the chip to make a complete
system.

Most SoCs require power supplies, antennas and a circuit board
of some sort, plus a human interface of some sort (screen,
buttons, microphones, speakers, USB…) to make an end-user
product. Nonetheless, a large part of the intelligence and
complexity of a consumer product is distilled into the primary
SoC inside so it is not a misnomer to refer call them systems.

However, when we talk about ESL (electronic system level) in
the context of chip design, we need to be humble and realize that
the chip goes into something larger that some other person
considers to be the system. Importantly from a business

160

perspective, is that the people at the higher level have very little
interest in how the lower level components are designed and it is
technically hard to take advantage of in any case. The RTL
designer doesn't care much about how the library was
characterized; the software engineer doesn't care much about how
the language used for the RTL and so on.

At each level some model of the system is required. It seems to
be a rule of modeling that it is very difficult to improve
(automatically) the performance of a model by much more than a
factor of 10 or 20 by throwing out detail. Obviously, you can’t do
software development on an RTL model of the microprocessor;
too slow by far. Less obviously, you can’t create a model on
which you can develop software simply by taking the RTL model
and reducing its detail and speeding it up. At the next level down,
the RTL model itself is not something that can be created simply
by crunching the gate-level netlist, which in turn is very different
from the circuit simulation model. The process development
people model implants and impurities in semiconductors but
those models are not much use for analog designers; they contain
too much of the wrong type of detail making them too slow.

When I was at Virtutech, Ericsson was a customer and they used
(and still do, as far as I know) Virtutech’s products to model 3G
base stations, which is what the engineers we interfaced with
considered a system. A 3G base station is a cabinet sized box that
can contain anything from a dozen up to 60 or so large circuit
boards, in total perhaps 800 processors all running their own
code. Each base station is actually a unique configuration of
boards so each had to be modeled to make sure that that
collection of boards operated correctly, which was easiest to do
with simulation. Finding all the right boards and cables would
take at least a couple of weeks.

I was at a cell-phone conference in the mid-1990s where I talked
to a person in a different part of Ericsson. They had a huge
business building cell-phone networks all over the world. He did
system modeling of some sort to make sure that the correct
capacity was in place. To him a system wasn’t a chip, wasn’t
even a base-station. It was the complete network of base-stations
along with the millions of cell-phones that would be in

 161

communication with them. He thought on a completely different
scale to most of us.

His major issues were all at the basic flow levels. The type of
modeling he did was more like fluid dynamics than anything
electronic. The next level down, at the base-station, the biggest
problem was getting the software correctly configured for what
is, in effect, a hugely complex multi-processor mainframe with a
lot of radios attached. Even on an SoC today, more manpower
goes into the software than into designing the chip itself.

And most chips are built using an IP-based methodology, some
of which is complex enough to call a system in its own right. So
it’s pretty much “turtles all the way down”.

Don’t listen to your customers
There is a train of thought that the route to success in a business
is giving a customer what they say they want. At some level this
is obviously good advice. But there are two problems with it.
Firstly, the customer always wants incremental improvement on
what they already have, and rarely is imaginative enough to ask
for what they really need. And secondly, this can lead to design
by committee producing a product that has too many features to
be usable.

A nice example of this is Apple’s design of the iPhone. Nobody
knew they wanted it. In a vague sort of way they probably
wanted a phone from Apple knowing it would be Mac and iPod-
like. Luckily Apple didn’t simply go and ask all the carriers what
they wanted, they designed what they wanted to and then found a
carrier willing to take it largely unseen. Of course lots of people
were involved in the iPhone design, not just CEO Steve Jobs and
chief designer Jonathan Ive (another Brit, by the way, referring
back to my post about the benefits of easier immigration) but it
was designed with a conceptual integrity rather than a list of tick-
the-box features. The first version clearly cut a lot of corners that
might have been fatal: no 3G data access, no GPS, no cut-and-
paste, no way to send photos in text messages, only a couple of
applications honored landscape mode. The second version came
with 3G and GPS. Most of the rest of the initial peeves are now

162

fixed in the 3.0 version of the operating system (which, as a
registered iPhone developer, I already have installed). But the
moral is that they didn’t ask their customers to produce a feature
list, and they didn’t make an attempt to implement as much of
that list as possible.

When I was at Cadence we were falling behind in place and
route. So we decided to build a next generation place and route
environment including everything the customers wanted. It was
to be called Integration Ensemble. We asked all our customers
what the requirements should be. So, of course, it ended up as a
long list of everything every group had ever wanted, with little
conceptual integrity. In particular, for example, customers
insisted that integration ensemble should provide good support
for multiple voltages, which were just going mainstream at that
time, or they wouldn't even consider it. We specced out such a
product and started to build it. With so many features it would
take longer to build than customers would want to wait but
customers were insistent that anything less than the full product
would be of no use. Then these same customers all purchased
Silicon Perspective since what they really needed was good
placement and fast feedback, which was not at the top of their
list. Silicon Perspective did not even support multiple voltage
supplies at that point. The end of that story was that Cadence
expensively acquired Silicon Perspective and Integration
Ensemble was quietly dropped. The customers got what they
wanted even though they never asked for it.

One area where marketing is especially easy is when the
developer is the customer for the product, when they are “eating
their own dogfood” as the saying goes. This is one of the factors
driving success in open source software: the developers are
usually their own customers. iPhone and other Apple products are
also like this; the designers all will use the product. EDA
software (and many other products from jet-engines to heart-
pacemakers) are generally not like this, so marketing in the sense
of product definition is required. Generally in this type of
environment open source has been unsuccessful and a lot of the
intellectual property (in the most general sense) of the product is
not so much in the implementation but in the compromises
around what to put in and what to leave out. Doing a good job of

 163

specifying products is one of the hardest parts of marketing,
requiring a deep understanding of the customer problems and a
deep enough understanding of the technology and engineering
involved to deliver a solution.

The art of presentations
As a marketing guy, and even when I was an engineering
manager, I make a lot of presentations. I’ve also been on a couple
of presentation courses over the years. The most recently by
Nancy Duarte, whose biggest claim to fame is doing Al Gore’s
slides for his Inconvenient Truth presentation. The most amazing
thing about that was not the course itself but the location: a whole
building of professional slide designers doing nothing but
presentations for large companies for tens of thousands of dollars
a time.

Most problems with presentations come about from making the
presentation serve too many purposes. They are what will be on
the screen for the audience to see, they may be your own way of
keeping track of what you need to say, and they may be a
handout that is meant to stand on its own for people who missed
the presentation. The problem is that the first function, adding to
what you are saying, requires different content from the other
two, reminding you what to say or serving as a substitute for
what you say.

The reality is that your audience can only concentrate on one
verbal thing at a time. If you put a lot of text on your slide then
your audience will be reading it and not listening to you. You
need to decide which is going to win. You cannot have it both
ways and make a detailed content-rich speech accompanied by a
detailed content-rich presentation. If the content is identical in
both places, it is very boring. If it is different, it is very
confusing. There are even studies that show that if what you say
is all on the slides, then you are better either giving a speech
(without slides), or handing out the slides (without saying
anything).

The rest of this entry assumes that you are doing the most
common form of hi-tech presentation, where a good part of the

164

content is on the slides. When you deliver it you should
emphasize the key points but don’t go over every line. Instead,
tell anecdotes that back up the dry facts on the screen.
Personalize them as much as you can to make them more
powerful and memorable. This approach works well for
presentations that you are not going to rehearse extensively, or
where someone else may be the presenter. If it’s not on the slide
it doesn’t exist.

When putting together a presentation, like any sort of writing, the
most important thing is to have a clear idea in your own mind of
what you want to say. So the first rule is to write the one slide
version of the presentation first. If you can’t do this then you
haven’t decided what point you are trying to make, or what your
company’s value proposition is, or how to position your product.
Until you get this right, your presentation is like a joke where you
have forgotten the punch line. Once you have this, then this
should be very close to the first slide of your eventual
presentation. After all, it is the most important thing so you
should open with it; and probably close with it too.

When you have the one slide version worked out you can go to 3
or 4 slides. Get that right before you go to the full-length
presentation. When you expand the few points from those few
slides to a full-length presentation, make sure that you
presentation “tells a story”. Like a good story, it should have a
theme running through it, not just be a collection of random
slides. How many slides? No more than one every 2 minutes
max. If you have 20 minutes to speak, 10 slides or so.

In the consulting work I do, I find that not getting these two
things right are very common. Presentations where the basic
message is not clear, and presentations that do not flow from
beginning to end. Not to mention people trying to get through 20
slides in 10 minutes.

If you are presenting to foreigners who don’t speak good English,
you must make sure that everything important is on the slides
since you can assume they will not catch everything that you say
(maybe anything you say). You will also need to avoid slang that
non-Americans might not understand (although you’d be
surprised how many baseball analogies Europeans use these days

 165

without knowing what they really mean in a baseball context). I
remember the people at a Japanese distributor being confused by
“low-hanging fruit.” They thought it must have some sort of
sexual connotation!

So make sure you know the main point, and make sure that the
presentation tells a story that starts from and finishes with the
main point.

Oh, and here is another rule of thumb. Print out your slides. Put
them on the floor. Stand up. If you can’t read them the type is too
small. Or go with Guy Kawasaki's rule of using a minimum font
size at least half the age of the oldest person in the room.

Swiffering new EDA tools
Why isn’t a new EDA tool like Swiffer?

One point that I’ve made before is that big EDA companies
suffer from being unable to get new products into their channel.
As I said elsewhere:

“When so much is riding on just keeping the customer on-
board using the existing tools, the salesperson becomes
very risk averse about selling new products.”

The effect of this is that big EDA companies can only sell to
customers once there is market demand. But that is the same
problem as Proctor and Gamble faced with, say, Swiffer. Nobody
was demanding mop with replaceable sheets, nobody knew one
was available. So traditional marketing showed how useful it
could be and that it was available at your local supermarket and
now Swiffer is on track to be a billion dollar business.

Why can’t marketing do much to create demand in EDA? I don’t
entirely know, but here are some plausible relevant things.

Firstly, the EDA market (for IC design, not for FPGA or
embedded software) is inelastic. No matter how much advertising
is done, no matter how low the price, no matter how appealing
the packaging, the market for EDA tools is fixed. Sure, we can
steal market share from each other, maybe we can increase ASPs,

166

we can expand the definition of EDA. But there is no untapped
market of people out there who never knew they wanted to
design a chip, in the same way as we all turned out to be a market
of people who never knew we needed a post-it note. So we are
only marketing to people who already know they are designers.

EDA is not even like other software industries. It values different
things because it moves so fast. All users complain, with
justification, about the bugginess of EDA software, but they can’t
get by with the old solid version in the same way as in slower
moving software industries. In books like Crossing the Chasm
and The Innovator’s Dilemma, marketers are told to worry about
the job that the customer hires you to do. The customer doesn’t
want a drill, they want a hole. The job is holes. But when the
EDA engineer goes to Home Depot, he’s not looking for ways to
make a hole. He’s already decided that he wants an 18V cordless
drill with two gear ratios. Maybe he’ll pick between DeWalt and
Bosch but he’s not looking at those ads for explosive nail-guns.

Next, the design engineer has been burned before. Because the
technology treadmill moves so fast, tools don’t always work well
(or sometimes at all) but the purchaser doesn’t have the luxury of
waiting for code to mature, for standards to be in place, for the
landscape of winners and losers to be clear. But a lot of IC design
is about reducing risk (because we can't just fab the chip
repeatedly in the equivalent way to a software engineer
compiling and testing the code). One component of risk is using a
new tool so there is always a push of potential advantage of the
new tool against the pull of potential disaster if it fails. So
designers have learned to evaluate new tools in enormous detail,
to understand not just what they should do, but what they actually
do and how they work internally to do it. Other people don’t take
the cylinder-head off the engine before buying a car.

Brand name counts for very little in EDA. To the extent it counts
for anything in this context, it stands for a large organization of
application engineers who can potentially help adoption. It
certainly doesn’t stand for rock-solid reliability. The speed of
development means that every large EDA company has had its
share of disastrous releases that didn’t work and products that
never made it to market. There are no Toyotas and Hondas in

 167

EDA with a reputation for unmatched quality. I don’t think
anyone knows how it would be possible to create one without it
also having a reputation for the unmatched irrelevance of many
of its products due to lateness.

So there are a few theories. Like all stories after the fact, they are
plausible but it is not clear if they are the real reason. But the
facts are clear: traditional marketing, such as advertising, doesn’t
work for EDA products.

Presentations without bullets
I talked earlier about the typical hi-tech presentation where the
content is largely on the slides. In that case you must add color by
what you say rather than simply reading what is on the slides.

The alternative approach is essentially to make a speech. The real
content is in what you say. The slides then should be graphical
backup (pictures, graphs, key points) to what you are saying.
Watch a Steve Jobs keynote from MacWorld to see this type of
presentation done really well, or presentations from TED (but
beware, not all of them have slides at all).

But just like Steve Jobs or the TED presenters, to carry this off
well you need to rehearse until you have your speech perfect,
either basically memorizing it or doing it from notes. Whatever
you do, don’t write it out word for word and read it. The slides
are not going to help you remember what to say, they are another
complication for you to make sure is synchronized with your
speech. So rehearse it without the slides until you have that
perfect. Then rehearse it with the slides. Then rehearse it some
more. Like a good actor, it takes a lot of repetition to make ad
libs look so spontaneous.

This approach will not work presenting to foreigners who don’t
speak fluent English. There is simply not enough context in the
visuals alone, and your brain has a hard time processing both
visuals and speech in a second language. If you know a foreign
language somewhat, but are not bilingual, then watch the news in
that language. It is really hard work, and you already know the

168

basic story since they cover the same news items as the regular
network news.

If you are giving a keynote speech, then this is the ideal style to
use. You don’t, typically, have a strong "demand" like you do
when presenting to investors (fund my company) or customers
(buy my product). Instead you might want to intrigue the
audience, hiding the main point until late in the presentation. So
instead of opening with a one-slide version of the whole
presentation, you should try and find an interesting hook to get
people’s interest up. Preferably not that Moore’s Law is going to
make our lives harder since I think we’ve all heard that one.

I find the most difficult thing to achieve when giving speeches to
large rooms of people is to be relaxed, and be myself. If I’m
relaxed then I’m a pretty good speaker. If I’m not relaxed, not so
much. Also, my natural speed of speaking is too fast for a public
speech, but again if I force myself to slow down it is hard to be
myself. This is especially bad if presenting to foreigners since I
have to slow down even more.

I also hate speaking from behind a fixed podium. Sometimes you
don’t get to choose, but when I do I’ll always take a wireless
lavalier (lapel) mike over anything else, although the best ones
are not actually lapel mikes but go over your ear so that the mike
comes down the side of your head. That leaves my hands free,
which makes my speaking better. Must be some Italian blood
somewhere.

Another completely different approach, difficult to carry off, is
what has become known as the Lawrence Lessig presentation
style, after the Stanford law professor who originated it. Look,
for example, for presentations where he talks about copyright and
gets through 235 slides in 30 minutes, or watch a great
presentation on identity with Dick Hardt using the same
approach. Each slide is on the screen for sometimes just fractions
of a second, maybe containing just a single word. I’ve never
dared to attempt a presentation like this. The level of preparation
and practice seems daunting.

 169

Creating demand in EDA
I talked earlier about how EDA marketing can’t create demand.
Small companies cannot afford much marketing and large
companies are in the vicious cycle of not being able to get
innovation into the channel since they can’t create demand even
though they could have money to spend if it were effective.

EDA used to be rich enough that it would advertise anyway, at
least to get the company name out in front of people (remember
all those in-flight magazine ads for Cadence and the “curfew
key” and suchlike). But as times got tighter, EDA stopped
advertising since it was ineffective. In turn, the books that used to
cover EDA, like EE Times and EDN, cut back their coverage and
laid off their specialist journalists like Richard Goering and Mike
Santarini. To be honest, I think for some time before that the
major readers of EDA coverage were the other EDA companies,
not the customers. I don’t have any way to know, but I’m sure the
readership of this blog is the same.

Trade shows seem to be a dying breed too, and not just in EDA.
DATE seems to be dead, as a tradeshow, with almost no
exhibitors any more. I wouldn’t be surprised if this year it has
almost no visitors any more either, and gives up next year. EDA
seems like it can support one real tradeshow, which is DAC. It is
mainly for startups for whom it is really the only way to get
discovered by customers outside of having a half-reasonable
website. The large EDA companies run their own tradeshows in
an environment that leverages their costs better than paying a
ridiculous rate for floor space, paying rapacious convention
center unions to set up the booth, and putting up with whatever
restrictions show management has chosen for this year (“you
can’t put a car on the booth, just because” was one memorable
one that I ran into once).

The large EDA companies, with some justification, feel that a big
presence at DAC is subsidizing their startup competitors as well
as not being the most cost-effective way to reach their customers
to show them the portfolio of new products. The best is to avoid
the political noise by at least showing up, but the booths with 60

170

demo suites running continuously with a 600 employee presence
are gone.

That leaves websites and search engines as the main way that
customer engineers discover what is available. So you’d think
that EDA company websites, especially for startups who have no
other channels, would be good. But there are very few websites
that do a good job of explaining the product line, the focus of the
company and so on in a way that is customer-oriented.

If you talk to PR agencies, they’ll tell you that the new thing is
using social networks and blogging to reach customers. But they
don’t really seem to know just how that would work. I mean I’m
reaching you through a blog because you are reading this. But if
every other blog item were a thinly disguised regurgitated press
release you’d soon give up reading. But it's not really possible to
do anything more technically in-depth. I don’t have the
knowledge to be the Roger Ebert of EDA even if I had the time to
go to all the “screenings”. But that leaves the problem that there
isn’t an easy way to find out what is coming soon to a theatre,
sorry, server-farm, near you and whether it is worth the
investment of time to take a serious look.

Finger in the nose
It’s interesting how certain phrases catch the popular imagination
and almost overnight become clichés, appearing in all sorts of
writing. The best of these phrases have the twin benefits that they
are both memorable and also immediately communicate the point
you are making. The first time you come across them, they may
even seem brilliant. The thousandth time, rather less so. Do we
really need to “rearrange the deck chairs on the Titanic” any
more, to imply that we are addressing minor tactical issues while
the major strategic issues remain unaddressed? Or rather, we are
“ignoring the elephant in the living room.”

I don’t recall exactly when “change” didn’t seem to imply big
enough, well, change. So we had to have “sea change” which
sounds bigger, even though I’m not sure exactly what a sea
change is. It sounds very nautical, and, as the son of a naval
officer, I ought to know what it means but I don’t and neither

 171

does my father. Wikipedia tells me that it comes from
Shakespeare's Tempest but that hardly explains the recent change
in its popularity. Or should I say sea change in its popularity.

It was George Orwell, in Politics and the English Language, an
essay that anyone who does any writing should read, who pointed
out that most of these clichés are simply ways of avoiding
thinking through exactly what we mean.

In Britain, there are a lot of American television shows, so people
there get very accustomed to American ways of saying things.
The oddest is the way that British people know a lot of American
sports terminology used in an everyday sense, without knowing
anything about the underlying sports feature that the phrase is
meant to conjure up. Some phrases are obvious: “in the ballpark”
for example. But British people may well know that something
“out of left field” is a surprise, without really knowing where left
field is and what might be coming out of it surprisingly. Or know
that a “Hail Mary pass” is a last desperate attempt, without ever
having seen such a pass on the football field (er, that would be
American football to the British, since football is what Americans
call soccer). British cricket terminology doesn’t do so well in the
opposite direction. Few Americans know what “batting on a
sticky wicket” means.

When you get into other countries where English is a foreign
language, you need to be very wary of using such imagery. It
may simply be unknown even to people who are bilingual, and
without sometimes knowing anything about the underlying image
being conjured up, not something easy to guess at. I mentioned
recently that some Japanese wondered what “low hanging fruit”
meant, and guessed at some sort of sexual metaphor. Much better
are metaphors that work immediately in any language, like
“herding cats.”

When I lived in France, we had great fun translating colloquial
phrases word for word from French into English or vice-versa.
For example, the French have a phrase “doigt dans le nez” used
to imply that something is trivially easy. Literally translated it’s
“finger in the nose”, the implication being that it is so easy you
could do it with a finger in your nose. I suppose we might say we
could do it with one hand behind our backs. Or more fun, we

172

could say it is a “piece of cake” and translate that word for word
as a “tranche de gateau.”

So write something on weird phrases. Finger in the nose!

Corporate CAD cycle
Many things in business go in cycles. One in EDA is what I call
the “corporate CAD cycle”. It goes like this. I’m sure a similar
dynamic plays out in other industries too.

A large multidivisional semiconductor company has dozens of
products in development. They have management who decide
that the best way to hold groups responsible is to give them
complete control of their destiny. Each group decides what its
design methodology is going to be, purchases tools and is
generally pretty successful at getting their products out. Life is
good. Then one day someone in finance or corporate CAD
notices two things: the amount of money that the company is
spending on tools is very high, and secondly the various groups
have made different tool/methodology decisions and so it is much
more difficult than it should be to move around people (need re-
training) and pieces of designs (wrong formats, wrong standards).
The first phase of the cycle has ended.

A decree goes out. Corporate CAD will make corporate-wide
volume tool purchase and decide what should be the standard
flow. The standard flow will be mandated throughout the
corporation, no exceptions. In a fairly short time the big problems
are fixed: the tool budget is slashed now that experienced
purchasing agents are negotiating very large deals with just a few
EDA vendors; moving people and blocks around is simpler since
everyone has the same base knowledge. Life is good. The second
phase of the cycle has ended.

But management notices that many product groups are being a lot
less successful at getting their products out than they used to be.
This is a huge multi-million dollar problem. Management takes a
look at the most important bet-the-company product. The product
group says they are forced to use the wrong tools, that they are
spending too much time getting blocks into corporate formats

 173

that they don’t use themselves, that they have too few licenses.
But this chip is critical, so just this once, since the group is really
expert, they are allowed to buy whatever tools they need to get
the job done. Of course when corporate CAD said there were no
exceptions to the standard flow, they weren’t that stupid. Of
course there were exceptions for RF. And the advanced group
over there that is doing a pilot project in 45nm obviously needs
some tools that are different. Oh, and we just acquired a little
fabless semiconductor company who uses something non-
standard, we’d better let them at least get their chip out before we
force them to use the standard flow, it’s hard enough for them
switching to our process. Gradually the iron grip of corporate
CAD relaxes. Corporate CAD makes big purchases, but a lot of
those tools are sitting on shelves. Design groups are largely
making their own decisions about tools. Chips are coming out
successfully again. Life is good. Then someone in finance…

This cycle seems to re-play itself in many areas where two
contradictory goals collide. In the CAD case above it is the need
to have a standard flow, but also allow exceptions when the
standard flow is not enough. Of course I exaggerated the story a
bit, but the basic cycle between giving too much freedom and not
enough seems to be real and I’ve seen a version of the cycle play
out in many semiconductor companies.

One other area with this sort of cycle is whether to manage
functionally or along product lines. Should a large semiconductor
or EDA company (or anyone else for that matter) run engineering
as an organization, and then have project managers for each
product? Or should a product be responsible for all its own
groups? Engineering, marketing, finance (probably not), sales
(maybe). There are problems with both structures. If product
groups are self-contained (even if they don’t have dedicated
salesforces) then there is no control of corporate brand image,
little standardization of development processes and so on. At
once point when I was in Cadence years ago, we had 6 or 7 full-
page ads in EE times from different groups, all product-oriented
but with a different look and feel and brand image. However, if
engineering, marketing and so on are all functionally managed
then they can be very unresponsive to urgent needs in the product
groups.

174

The way this seems to play out is to be functionally organized for
a few years, then when that seems ossified, become structured
into business units or product groups for a few years. One reason
that I think that this can actually be effective, not just
management churning, is that the relationships from the previous
era endure, at least for a couple of years. If you were previously
in marketing for a product group, and now you are in the
company-wide marketing organization, you still know all the
engineers that work on the products you care most about; after
all, only a year ago you were all in the same organization. When
eventually you get blown part back into product groups, you still
know everyone in marketing, you know in your bones the
corporate look-and-feel, branding and so on, and it takes a couple
of years to gradually forget (as an organization, with people
coming and going, more than individuals actually forgetting).

So there really is something to the old management canard that,
when you don't know what to do, centralize everything that is
distributed and distribute everything that is centralized.

Licensed to bill
As I’ve said before, in every sizeable EDA company that I’ve
worked, a huge percentage, 30-50%, of all calls to the support
hotline are to do with license keys. Why is this so complicated?
Are EDA software engineers incompetent?

Most of these problems are not directly with the license key
manager (the most common, almost universal, one is FlexLM).
Sometimes there are direct issues because customers want to run
a single license server for all the EDA tools they have from all
their vendors, something that the individual EDA companies
have a hard time testing since they don’t have access to everyone
else’s tools. More often license problems are simply because
licenses are much more complicated than most people realize.

All sorts of license problems can occur, but here is a typical one.
The customer wants some capability and discusses with the
salesperson who provides a quote for a particular configuration.
Eventually an order gets placed and a license key is cut for that
configuration. At this point, and only then, it turns out that the

 175

configuration doesn’t actually deliver the capability that the
customer thought he’d asked for, and that the salesperson thought
she’d provided. Something is missing. The customer calls support
to either to report a bug or, if they realize what is going on, to try
and get the specific license added. Often an option has been
omitted from the configuration (such as a special parser) that
everyone assumed was included, or assumed that it wasn’t
needed, or that turned out to be bundled with some other
capability in a mysterious way.

Digital Equipment, in the heyday of the Vax, actually had an AI
program XCON salespeople had to use to configure Vax
computers since otherwise they always had similar problems,
although in the hardware domain. The order omitted a required
cable, or overloaded a power supply or left out a software driver.
Without this error being corrected, the delivered system could not
be assembled in a way that would run. This is worse still in the
hardware world since it takes from a couple of days to a couple
of weeks to get a missing cable to the customer site. It can’t
simply be fixed over the phone.

The fundamental problem is that it is hard to map capabilities that
marketing wants to sell and price, into the actual control points in
the software that permit or deny certain activities, and the ways in
which the different components interact. Few people have a good
understanding of this, and there is no correct answer to many of
the questions.

Here’s an example. Should a long-running tool claim a license
when it starts for an optional feature that might be required later?
Or should it wait until it has run for hours and then fail if a
license is not then available? Which inconveniences the user
less? There are pressures on the vendor side to want to claim
licenses as early as possible (so the customer needs to buy more
licenses) which at least means that if a tool is going to fail due to
lack of licenses, it does so immediately without having done a lot
of wasted work, and in a part of the code where it is easy to
handle. There are pressures from the customer side to want to
claim licenses as late as possible (so they don’t get held for long
periods when they are not being truly used) but also to expect that
the tool will behave gracefully when their paucity of licenses

176

comes to light and the run is deep in the innards of the tool when
it finds out it cannot continue.

Interactive tools are worse still. Do you claim a license in order
to show the capability on a menu? Or do you show a menu item
that may fail due to lack of a license when you click it? Do you
behave the same if the customer has licenses but all are currently
in use, versus the customer not having any licenses to that
product at all?

None of these problems typically affect the engineers developing
the product or their AEs. Usually all employees have a “run
anything” license. The licenses issues often only come to light
when customers run into problems. After all, they may be the
only site in the world running that particular configuration. Some
testing can be done easily, but exhaustive testing is obviously
impossible.

EDA companies want to create incremental revenue for new
capabilities, so they don’t want to simply give them to all existing
customers even though they may want to make sure that all new
customers are “up to date.” This drives an explosion of license
options that sometimes interact in ways that nobody has thought
of.

Until some poor engineer, in the middle of the night, tries to
simulate a design containing two ARM processors. That’s when
they discover that nobody thought about whether two ARM
simulations should require two licenses or one. The code claims
another license every time an ARM model is loaded, in effect it
says two. Marketing hadn’t considered the issue. Sales assured
the customer that one license would be enough without asking
anyone. Nobody had ever tried it before. “Hello, support?”

DAC
Xxx

The design automation conference (DAC) is later this month in
San Francisco. Trade shows in general are probably gradually
dying. I doubt we’ll be going to them in ten years time. But

 177

rumors of their death are somewhat exaggerated. DAC will
probably be in San Francisco longer than the Chronicle.

Marketing in EDA these days is very difficult since the channels
don’t exist in the way that they used to. Both EETimes and EDN
have laid off their seasoned EDA journalists (Richard Goering
from EETimes, now at Cadence, and Mike Santarini from EDN,
now at Xilinx). The big EDA companies stopped advertising,
which meant that the books couldn’t financially justify covering
the industry. This was an unwanted side-effect of what was
probably a reasonable decision. It’s never been clear whether
advertising in the print edition was ever a good financial
decision, but as more and more eyeballs went online it certainly
got worse. Online advertising rates are just not as high, and there
is a limit to how much a publication can annoy its customers with
flashing adds, peel-back corners and stealing the screen for an
enforced video.

So DAC is left standing as really the only marketing channel that
works. It works in the sense that the major decision-makers from
the EDA customers all come to DAC. DATE will presumably
continue as a great conference but I doubt its tradeshow will
recover as a must-attend event (and since it costs about the same
as attending DAC, even a European EDA company will go to
DAC if it can do only one). Japan still has its local shows too.

The big EDA companies are all going this year. I think it is
foolish when they don’t attend. This is partially because they
need to be seen to be good corporate citizens and not attending is
unnecessary insulting to everyone else in the industry. They also
tend to generate unnecessary bad publicity if they stay away.
However, it is simply uneconomic for them to come in the
strength that they used to (when I was at Cadence we’d have 5-
600 people at DAC, running 50 demo suites). The “tax” from
DAC itself, the conference center, the unions and everyone
makes it a lot more expensive than running their own one-
company shows.

Clearly, for the small companies, DAC is their one opportunity to
get noticed other than people falling onto their website from a
search engine. Not attending is tantamount to admitting you
either no longer exist or are about to die. Envis, where I was

178

recently interim CEO, has apparently pulled out of DAC. I don’t
have an inside scoop on what it means but it doesn’t seem like it
would be good.

If you work in marketing, DAC gives an interesting insight into
the problems of GM or United Airlines. It is the one time when
us silicon valley types have to get involved with union work
rules. It costs more to get your equipment from the loading dock
in the conference center to your booth space, than it does to ship
it there (and this is true in Las Vegas or Annaheim, not just when
DAC is local in San Francisco). You have to use a certain
number of hours of labor whether you need it or not. You have to
pay hundreds of dollars for someone to vacuum your carpet each
day, since you are not allowed to do it yourself.

I said above that all the major decision makers from EDA
customers are at DAC. Depending on your definition of “decision
maker” that is anywhere from a few dozen to a few hundred
people. The whole of DAC is really for them. Whether the junior
engineers and academics show up simply doesn’t matter that
much (for the tradeshow, the accompanying conference would be
nothing without academic participation).

The Denali party
As everyone in EDA knows, Denali has thrown a party every
DAC for what seems like forever.

I had lunch last week with Mark Gogolowski and I asked him
how the party came about. It started 11 years ago in 1999 at DAC
in New Orleans. Denali wanted to have a party for their
customers, but they faced a couple of constraints. They couldn’t
compete with the big Cadence and Synopsys parties of that era,
but on the other hand they knew that parties weren’t much fun
unless they felt crowded. So they’d better invite more than just
their (few) customers, especially since they needed to partner
with all the simulation vendors, which meant all the big guys
anyway. So invite everyone. Denali was under 10 employees in
this era, not well-known, so they were more worried about
holding a party and nobody coming than the opposite. But never
underestimate the gravitational attraction of an open bar.

 179

They expected about 100, maybe 150 people, would attend. One
thing that they hadn’t anticipated was that the AEs from the big
guys weren’t able to get into their own parties (the execs and
sales guys went with their customers; AEs need not apply). So
they showed up in large numbers. In the end well over 500
people came for at least some of the evening. At midnight the
venue management told them they had to stop the party since the
entire night’s alcohol budget was already gone. So they gulped,
wrote a large check, and kept the party going for another hour.
Shutting down a party as early as midnight in New Orleans and
throwing their customers out didn’t laissez les bons temps roulez.

They realized that the party had been something special, and not
just for their customers. The entire EDA community had shown
up since Denali was neutral ground. Nobody from Cadence went
to the Synopsys party and vice versa. But Denali, as the
Switzerland of EDA, welcomed everyone. So next year, it
seemed like it would be a good idea to do it again. And so it has
been for many years.

I think it has turned out, somewhat fortuitously, to have been a
great way to market themselves. We are in an era when it is really
hard to get your name out in front of customers and partners.
Denali doesn’t have that problem, plus it has a lot of goodwill
from the entire EDA community since the Denali party isn’t
exclusive. You don’t have to be a customer of Denali to get in;
you can even be a competitor.

EDA idol is back again this year, along with a new “Community
Superhero” contest. Another new thing this year is that they will
be presenting an award for “EDA’s Next Top Blogger.” Of
course, I have my own idea of who that should be. When I know
how you can vote I’ll let you know!

So here we are a decade later. Everyone knows who Denali is,
and they are a much bigger company now. They are still private,
so just how big is largely a guess. But nobody cares about their
revenue, the financial answer everyone wants to know is “how
much does the Denali party cost?” I slipped a shot of vodka into
Mark’s Diet Coke but he still wasn’t talking.

180

Value propositions
I spent some time earlier this week
giving someone a bit of free
consulting about value
propositions in EDA. If you take
the high-level view then there
seem to be three main value
propositions in EDA: optimization,
productivity and price.

Optimization means that your tool
produces a better result than alternatives. A place and route tool
that produces smaller designs. A synthesis tool that produces less
negative slack. A power-reduction tool that reduces power. This
is the most compelling value proposition you can have since the
result from using your tool as opposed to sticking with the status
quo shows through in the final chip affecting its price,
performance or power. The higher the volume the chip is
expected to run at, the higher the value of optimizing it.

Productivity means that your tool produces an equivalent result to
the alternatives but does it in less time. My experience is that this
is an incredibly difficult value proposition to sell unless the
productivity difference is so large that it is a qualitative change:
10X not just 50% better. Users are risk-averse and just won’t
move if they have “predictable pain.” It may take an extra week
or an extra engineer, but it is predictable and the problem is
understood and well-controlled. A new tool might fail, causing
unpredictable pain, and so the productivity gain needs to be
enormous to get interest. Otherwise the least risky approach is to
spend the extra money on schedule or manpower to buy
predictability.

The third value proposition is that you get the same result in the
same time but the tool is cheaper. For something mission-critical
this is just not a very interesting value proposition, sort of like
being a discount heart surgeon. Only for very mature product
spaces where testing is easy is price really a driver: Verilog
simulation for example. The only product I can think of that
strongly used price as its competitive edge was the original

 181

ModelSim VHDL simulator, and even then it was probably
simply the best simulator and the low price simply left money on
the table.

Another dimension of value proposition is whether the tool is
must-have or nice-to-have. By must-have I don’t mean that
customers must buy your tool (nice work if you can get it) but
that they must buy either from you or one of your competitors or
roll their own. Nice-to-have means that a chip can be designed
without a tool in that space, doing stuff by hand, creating custom
scripts, having a longer schedule or whatever. It is almost
impossible to build a big business on a nice-to-have tool.

Moore’s law makes must-have a moving target. Signal integrity
analysis ten years ago was, perhaps, nice-to-have. Then for
designers in leading edge processes it became must-have.
Eventually the technology got rolled into place and route tools
since everybody needed it.

That is actually a fairly typical route for technology. Some new
wrinkle comes on the scene and somebody creates a verification
tool to detect the handful of fatal wrinkles that can then be fixed
by hand. A couple of process generations later, there are 100,000
fatal wrinkles being detected and so it is no longer adequate to
have just a verification tool. It becomes necessary to build at least
some wrinkle avoidance into the creation tools so that fatal
wrinkles are not created, or are only created in manageable
numbers again. So the tool goes from nice-to-have, to must-have
to incorporated into the main flow.

Being too early to market
Startups have a singular focus on getting their product to market
as quickly as possible. Given that focus, you’d think that the
primary mode of failure for a startup would be being too late to
market, but it’s actually hard to think of startups that fail by being
too late. Some startups fail because they never manage to get a
product shipped at all, which I suppose is a sort of special case of
being too late to market: you can’t be later than never. But try
and think of a startup that failed because, by the time it got to
market, a competitor had already vacuumed up all the

182

opportunities. Monterey in place and route, I suppose, simply too
far behind Magma and the big guys re-tooling.

On the other hand, many startups fail because they are too early
to market. In EDA, technologies tend to be targeted at certain
process nodes which we can see coming down the track. There’s
little upside in developing technologies to retrofit old design
methodologies that, by definition, already work. Instead, the
EDA startup typically takes the Wayne Gretsky approach of
going where the puck is going to be. Develop a technology that is
going to be needed and wait for Moore’s law to progress so that
the world does need it. The trouble with this is that it often
underestimates the amount of mileage that can be got out of the
old technologies.

Since process nodes come along every couple of years, and even
that is slowing, getting the node wrong can be fatal. If you
develop a technology that you believe everyone needs at 45nm
but it turns out not to be needed until 30nm then you are going to
need an extra two years of money. And even then, it may turn out
not to be really compelling until that 22nm node, after you’ve
gone out of business. All the OPC (optical proximity correction)
companies were too early to market, supplying technology that
would be needed but wasn't at that point in time. Even companies
that had good exits, like Clearshape, were basically running out
of runway since they were a process generation ahead of when
their technology became essential.

The windows paradigm was really developed at Xerox PARC
(yes, Doug Englebart at SRI had a part to play too). Xerox is
often criticised for not commercializing this but in fact they did
try. They had a computer, the Xerox Star, with all that good stuff
in. But it was way too expensive and failed because it was too
early. The next attempt was Apple. Not Macintosh, Lisa (pictured
above). It failed. Too early and so too expensive. One can argue
the extent to which the first Macs were too early, appealing only
to hobbyists at first until the laser printer (also invented at PARC)
came along. There are other dynamics in play than just timing but
Microsoft clearly made the most money out of commercializing
those Xerox ideas, coming along after everyone else.

 183

Another means of being too early is simply having an initial
product that it turns out nobody needs yet because it’s not good
enough yet. Semiconductor development processes are all about
risk-aversion, and any change has to mean that the risk of
changing is less than the risk of not changing. For a startup with
an early product in a process generation where the technology
might be only nice-to-have this is a high barrier to cross. The
startup might just serve as a wakeup call to everyone else that a
product is required in the space, and eventually another startup
executes better (having seen the first company fail) or the big
EDA companies copy the technology into their own product line.

Overall, I think more startups fail by being too early to market
than fail by being too late. Remember, it’s the second mouse that
gets the cheese.

Barriers to entry
When I looked around at DAC last month (well, the month before
last, what happened to August?) one thing that is in some ways
surprising is that, given the poor growth prospects of the EDA
industry, there are so many small EDA companies.

If you are a technologist of some sort then it seems like the
challenge of getting an EDA company going is insurmountable.
After all, there are probably only a couple of dozen people in the
world who have deep enough knowledge of the esoteric area of
design or semiconductor to be able to create an effective product.
That seems like it should count as a high barrier.

But, in fact, technology is the lowest of barriers if you are in a
market where technology counts for something. Designing and
building chips is something that races along at such a breakneck
pace that the whole design ecosystem is disrupted every few
years and new technology is required. It has to come from
somewhere. As a result, brand-name counts for very little and
small companies with differentiated important technology can be
successful very quickly.

Other industries are not like that nowhere else does technology
move so fast. What was the last big innovation in automotive?

184

Probably hybrid powertrains. Most cars still don’t have them and
it is now ten year old technology.

Let’s think of an industry with just about the least amount of
technology, so pretty much at the other end of the scale from
EDA and semiconductor: bottled water. Do you think that your
bottled water startup is going to do well because you have better
water technology? Do you think that the customer who chose
Perrier rather than Calistoga could actually taste the difference
anyway? Bottled water is selling some sort of emotional
aspirational dream.

You’ve obviously noticed that if you go to bar and get upscale
water then you typically end up with something from Europe
(San Pellegrino, Perrier, Evian) and not something from
California (Crystal Geyser, Calistoga). It has to be bottled in
Europe and shipped here. Why don’t they ship it in bulk and
bottle it here? For the same reason as wine is bottled before it is
shipped: nobody would trust what was in the bottle. One thing
that surprised me when I was in Japan a couple of years ago is
that the Crystal Geyser water we turn down as being
insufficiently upscale is what they drink over there. It comes
from California, the other side of the Pacific, how exotic is that? I
don’t know if the third leg of the stool exists, people in Europe
drinking water from Asia: bottled from a spring on Mount Fuji,
how zen is that?.

In between are lots of companies and industries where there is
obviously a technical component, and an emotional component.
BMW may be the ultimate driving machine, but most people who
buy one couldn’t tell you what a brake-horsepower is, even if
they know how many their car has. And almost nobody actually
uses all that horsepower, running their car at the redline on the
tacho all the time. Yes, there’s technology but mostly it’s an
emotional sell.

In the commercial world, think of Oracle. Do you think you are
going to displace Oracle because you’re little startup has some
superior relational database technology? No, there’s a whole
ecosystem around Oracle, they largely sell to people who don’t
understand technology (CFOs) and so brand-name counts for

 185

something. They are partially making an emotional decision and
buying peace of mind.

Brand name still counts for a lot in the consumer market space,
even if less than it used to. This is measured by the increase in
price for the brand name that consumers will pay compared to the
no-name. Many of the top brand names in the world (Coca-Cola,
Kellogs, Colgate) are very old going back a century or so but the
premium, especially in the current downturn, that people will pay
to get a Sony rather than Best Buy own-brand is shrinking.

So brand name or ecosystem are really high barriers to entry.
Technology not much. A few smart guys and a two or three years
of writing code is a lot easier than recreating the ecosystem
around ARM, never mind making your cola as well known as
Coke.

186

Chapter 4: Engineering

Where is all open source software?
There is a big cultural difference between tools for IC design and
tools for software design. A difference in the way they are
developed, the way they are sold, the way they are deployed. I
think there are two reasons.

Firstly, IC designers are not software designers (duh!) and so are
not generally capable of writing or extensively modifying their
own tools, so it doesn’t cross their mind that it might be a good
use of their time to do so. After all, it wouldn’t be.

Secondly, the culture has arisen that the studliest IC designer (or
whatever the equivalent is for a woman) has the most money
spent on their tools. Companies capitalize IC designers with large
amounts of software to increase their productivity. But it is not
really productivity, it is the ability to get the job done at all. Only
in the most technical sense is improving the time taken to design
a chip from a millennium to six months merely a productivity
increase. The EDA industry has improved engineering
productivity by a factor of maybe 100,000 in the last thirty years.

Neither of these are true in the world of tools for software
engineers. Firstly, they are software engineers and so can
develop software fast by either just going and developing it on
whatever is available (without requiring centuries) or they can
write themselves some productivity tools and then use those tools
to produce their product with higher efficiency. They are their
own customers in that sense.

Open source development has also been shown pretty
conclusively to be more efficient the closed source. Eric
Raymond’s book “The Cathedral and the Bazaar” is a little dated
but still the best survey of this. But there is a problem. Open
source software is also known as “free software”. Originally this
meant “free as in freedom not free as in beer” but has come to
mean “free as in beer” too. Or at least very cheap.

 187

Open source means that if you buy the product, and perhaps even
if you don’t, you also get the source code and can do what you
want with it. Of course, since you can do what you want, it
becomes really hard to sell a second copy since you can always
build that yourself from the source, so the second copy had better
be really cheap or that’s what you’ll do. For example, Wind
River used to have a proprietary royalty-bearing operating system
called VxWorks but the world is going to Linux and so Wind
River supplies their own version of Linux. But it is hard to charge
much and impossible to charge a royalty on this since a customer
can get Linux from many places and even hire a few engineers
and build their own version. Or a competitive company can take
the same source and customize their own product. It is hard to see
what Sun has got from Java to justify its investment, and even
harder to see why it recently bought MySQL for about a billion
dollars when the price for a copy of MySQL is exactly zero.

In that way, open source is a bit like Craigslist. Craigslist didn’t
steal all the money from newspaper classified advertising. It took
a billion dollar business and made it into a million dollar
business, making it impossible for anybody, even Craigslist
themselves, to make real money in classified advertising.

So the result of all of this in the world of tools for software
development is that all the best tools are open source, but nobody
can make any money selling them. This works fine as long as
enough people like Sun and IBM pay their developers to do open
source development on the basis they make money on the
hardware, or enough programmers do this in their spare time for
fun (and because if you want a job at somewhere like Google,
one of the things they’ll take a look at is what open source
projects you work on after hours). But there are no Microsofts of
open source, no Oracles nor Adobes. Not even Intuits or
Mathworks.

IC design tools are all closed source, apart from a few bits of
infrastructure like openAccess. Synopsys isn’t about to give you
the source code for Design Compiler just because you bought a
license, and they certainly aren’t going to put it up on the web so
Cadence can grab themselves a copy too. It is arguable whether
the quality would even improve that much if they did so since

188

most of the users are not itching to get into the millions of lines
of source code and add a few enhancements.

Now that electronic systems contain large amounts of software
content, these two worlds are starting to collide a bit. The
investment for a system design team in tools for the IC part is
maybe in the millions of dollars, and for the software part it is
essentially zero. And not because they are forgoing the best tools
because they are too cheap; those free tools are the best tools.

The number of chip designers is fairly small, perhaps 20,000
engineers. There are ten million software engineers. The price of
EDA tools has to be high to recover the development cost over a
small base; software tools have a much larger base. After all, Bill
Gates got rich selling copies of MS-DOS and Windows for less
than $100 each. But he sold a lot.

Open source again
The blog entry on open source seems to have generated more
comments than anything else. Maybe it’s because all the EDA
users want software to be free, and all the EDA producers are
worried that it might head in that direction. Everyone has an
opinion.

In a seemingly off-topic thought, let me recommend Econtalk
which is a weekly interview by Russ Roberts (a prof at GMU and
Stanford) with someone knowledgeable on some aspect of
economics interpreted in a wide sense. Last week it was
Keynesian economics and the week before it was building
schools in Africa. I typically listen while commuting.

One week these two disconnected items tie together since Russ’s
guest is Eric Raymond talking about open source and the nature
of the open source process. Recommended.

One thing about open source that I think people misunderstood is
that I was not predicting that there would or should be open
source EDA tools, or that the market was not big enough. I think
open source is successful when the programmer and the user are
the same person so there is no need to try and reduce the

 189

requirements to a specification. Or where the project is an open
source copy such as creating open source Flash, or even Linux
(open source Unix), so that the original serves as the
specification. I’ve even seen people claim that if you need a
specification the project is already off the rails. It is really hard to
write good software for an application that you don’t understand
well yourself, where you are not going to be your own user. EDA
software is largely like that. Designers are not (good)
programmers and programmers know scarily little about chip
design

There seems to be a similar dynamic about many websites:
Facebook, eBay, Yahoo, mySpace and many others were created
to serve a need that the founders felt they needed filled for
themselves, and then were smart enough to seize the moment. On
the other hand I think there is lots of opportunity on the net for
sites serving older people. The people who found web companies
are young and as a result older people are underserved. But old
people are on the web, they have money, they have time and they
are a fast growing demographic. What’s not to like? Like in the
open source case, the people who create such companies and
write the code are unlikely themselves to be in their 60s and 70s
so creating something successful is much harder.

Why is EDA so buggy?
I have sat through numerous keynote speeches by CTOs of
semiconductor companies berating the EDA industry for shipping
tools that are full of bugs and that are late, not ready enough in
advance of the appropriate process node. Of course this is true,
and nothing I am going to say is to imply that improvement is
impossible. But it is an intrinsic problem, not just laziness or
incompetence on the part of EDA vendors.

In an informal setting, that is to say over a beer rather than in
front of a large audience, I tell such CTOs that if they want more
reliable software then they can simply use an old version of the
tools that has been shipping for years. Tools like that get pretty
solid. Of course that is simply a glib response since I know that
they can’t design 65nm designs with 130nm tools.

190

So my next suggestion is that the EDA industry could delay
shipping new tools for an extra year or so to allow extensive
testing. Another glib response since we all know that the tools are
already late and even if it were possible to test them extensively
without shipping them (what would we use for test data?) the
delay would be unacceptable.

There are two reasons for this state of affairs, one technical and
one economic.

The technical reason is that it simply isn’t possible to know
everything necessary about a new process node far enough ahead
of time to allow for a robust development cycle. For example,
even with a huge team of people ready to go it is impossible to
develop a full suite of technology for 22nm design. We just don’t
know everything we need to know to get started and neither do
the semiconductor companies and their equipment suppliers.
Inevitably the tools will be later than desired and customers
would rather have buggy tools now than better tools in six
months. It is the EDA version of MacArthur’s dictum that a good
plan violently executed now is far better than a pefect plan
executed next week. In fact, whatever schedule is chosen, there
are always customers lining up to be beta sites, so that they can
get their hands on technology earlier, and pressure to ship even
earlier even though the tools will be buggier still.

There is also the fact that it is not really possible to develop an
EDA tool in a vacuum. There need to be libraries and designs in
the process node to be used to test and wring out the code. A new
tool is often rock solid on old designs, it is the new bigger more
complex designs that break the tools in new ways.

The economic argument is that EDA has to support several
process nodes at once and recoup its investment in a timely
manner. Those same CTOs who berate EDA companies for not
being aggressive enough, work at the same companies that have
CAD managers who insist that resources be diverted to back-
patching bugs. They want fixes that are already available added
back into obsolete (and no longer officially maintained) versions
of the software because their design groups haven’t got round to
switching. And those CTOs have finance managers who don’t

 191

want to increase their budget for leading edge tools only used by
the small number of advanced groups.

The effect of all of this is that EDA companies make their money
and recoup their investment on processes only when they become
mainstream. They cannot afford to make that investment too far
ahead of the mainstream for economic reasons as well as
technical ones. The fact that the mainstreaming of the most
advanced processes is slowing is already starting to strain this
model somewhat since it delays the time to payback.

One way to improve the quality of EDA software would be open
source. But if undertaken by the major suppliers, this would also
destroy their business model and probably thus result in no
software at all. However, EDA moves too fast for open source to
simply clone the successful products in parallel. The Econtalk
podcast with Eric Raymond pointed out another industry that
moves fast and where open source has little impact: games. By
the time a game is clearly a hit it is too late to start an open
source project to clone it. The gaming community will have got
bored with that game and moved onto something else by the time
the open source free version is complete and widely available.

Other industries don’t have this problem because they don’t
move so fast. Technologies in automotive are adopted in decades
not a year or two. CAD for automotive has a lot of time to adapt.
But EDA is stuck with a very short reaction cycle and even if the
ROI was richer, it is not clear that much would change.

Groundhog Day
You’ve probably seen the movie Groundhog Day in which the
Bill Murray self-centered weatherman character is stuck in a time
warp, waking up every morning to exactly the same day until,
after re-examining his life, he doesn’t. Taping out a chip seems to
be a bit like that, iterating trying to simultaneously meet budgets
in a number of dimensions: area, timing and power. And, of
course, schedule. Eventually, the cycle is broken and the chip
tapes out.

192

There is a lot of iteration in chip design. The goal of EDA is to
move as much of the iteration under the hood as possible. It is
obviously not possible to manually try the type of iteration the
synthesis or place and route tools do millions of times as they
produce their results. To the user this seems like a linear process:
read in the design, churn away, and write out the answer.

But when the user doesn’t get the result they wanted the
Groundhog Day feeling begins. EDA tools are not all that easy to
drive and most of the controls are somewhat indirect. Years ago I
once drove an old car with a steering wheel mounted manual
gear-shift. The linkage necessary to make the lever actually
engage the shafts in the gearbox probably worked OK when the
car had been new, but by the time I got to try, it was a secret art
to move the lever just the right way to engage the gears.
Controlling an EDA tool is like that only harder. There are many
parameters with very poorly defined results that are not even
really understood by the programmers who added them. Some of
them are even documented!

The internal iterations of EDA tools are inevitably hard to
control. The algorithms are all exponential and so rules-of-thumb
need to be used to make them terminate at all. One complex
algorithm really needs another inside its inner loops since a good
placement is onethat routes well. But there obviously isn’t time to
try millions of routes while finalizing a placement. And a good
route is one that doesn’t cause timing problems, or crosstalk
problems, or create features that can’t be manufactured and so on.
It is amazing that anything works at all.

Each process node the problem seems to get harder since we add
a new wrinkle. We used to have simple timing models that didn’t
even worry about resistance or signal slew rate. We didn’t have
to worry about crosstalk. We didn’t worry about power. There
was no need for resolution enhancement technologies since we
were using light with a shorter wavelength than the feature sizes.

The latest Groundhog Day wrinkle is process variability along
with the sheer difficulty of closing so many budgets
simultaneously. The black-belt groups whose job is to get chips
out where other groups are struggling are finding that they have

 193

to do more manual intervention than they are used to: more
floorplanning, manual placement, structured placement of
datapaths and so on. This seems to be the way of the future.
There is so much knowledge about the design that is needed for
success than is captured through the design process. With that
knowledge designers can find out whether it is still Groundhog
Day or whether it is finally February 3rd and time to tape out.

Power is the new timing
In the 1980s, chip design was focused on layout: cramming all
those gates into as few chips as possible, trying make use of
every square millimeter of silicon. The 1990s were the decade of
timing, when all the tools became timing driven with a
completely synchronous design methodology. Of course area was
still important but the biggest headache for designers was closing
timing. The 2000s seem to be the decade of power, where the
biggest headache is now meeting the power budget.

In the past, each process generation was accompanied by a
reduction in power supply voltage so that it was possible to push
up the frequency. Especially since voltage is squared in the
power equation. However, that game has come to an end since
reducing the voltage takes it too close to the threshold voltage
and transistors will not turn off properly. That is why, in
particular, microprocessors have gone multi-core rather than
having 10GHz frequencies. Their power density would be the
same as in the core of a nuclear reactor, not too suitable for a
server never mind a laptop.

Later, I’ll summarize the techniques available for power
reduction. Having recently been interim CEO of a startup
company in the power reduction business, I know a lot more than
I used to. But a fundamental problem is that almost any technique
requires changes to a large number of tools. For example, if the
chip has two power supply voltages, a gate may have two
different performances depending on which block it is used in.
The simulator needs to know that to get the timing right. But Vdd
and Vss don’t occur explicitly in the netlist. This is mainly for
historical reasons since they didn’t occur explicitly in schematics

194

either. Besides, back then there was only one of each so there
wasn’t the possibility for ambiguity.

The CPF and UPF standards were the most recent EDA standard
war. It looks like another Verilog/VHDL standoff where both
sides sort of win, and tools will need to be agnostic and support
both. Both standards are really a way of documenting power
intent for the techniques for power reduction that advanced
design groups have struggled to do manually. CPF (common
power format, but think of the C as Cadence, although it is
officially under SI2 now) seems slightly more powerful than UPF
(universal power format, but think of the universal as Synopsys,
Magma and Mentor, although it is officially under Accelera now
and is on track to becoming an IEEE standard P1801). CPF and
UPF attempt to separate the power architecture from everything
else so that changes can be made without requiring, in particular,
changes to the RTL.

Both standards do a lot of additional detailed housekeeping, but
one important thing that they do is to define for each group of
gates which power supply they are attached to so that all tools
can pick the correct performance, hook up the correct wires,
select the right library elements during synthesis, know when a
block is turned off and so on.

The detailed housekeeping that the standard formats take care of
acknowledge that the netlist is not independent of the power
architecture. If two blocks are attached to power supplies with
different voltages, then any signals between the two blocks need
to go through level shifters to ensure that signals switch properly.
But they don’t appear explicitly in the netlist. Since those level
shifters will eventually be inserted at place and route, any earlier
tools that analyze the netlist need to consider them too or they
will be confused.

If a block is powered down, then output signals need to be tied to
either Vdd or Vss since otherwise they will drift to an intermediate
value creating a partially active path from Vdd to Vss through both
the P and N transistors of gates in the fanout. This will dissipate
power: not good. But again, these cells, which don’t appear in the
netlist, will eventually be inserted and so will affect timing.
During powerdown, it is also possible that some register values

 195

need to be preserved, meaning that special retention registers that
take a third always-on power supply must be used.

The purpose of the CPF and UPF formats is to make it explicit
what these changes to the netlist are so that all tools in the flow
make the same decision and are not surprised to find, say, an
isolation cell in the layout that doesn’t correspond to anything in
the input netlist. Or, indeed, an isolation cell missing in the
layout, which should have been inserted despite the fact that it
doesn’t appear in the input netlist either.

You can learn a lot about low-power techniques by reading the
tutorial documents and presentations on the various websites
associated with these two important standards.

Power again
Earlier I promised an overview of what power reduction
techniques are out there. First, a disclosure: I was interim CEO of
Envis for about a year and I’ve done some consulting for
Nanochronous.

Firstly, there are two kinds of power: dynamic and static.
Dynamic power is used in switching signals inside the circuit. It
is affected by operating frequency and voltage. Static power is
dissipated whether the circuit is doing anything or not, and
mostly is leakage power through transistors that are supposedly
off but in fact leak a little current. This was not a problem above
100nm or so, but below transistors are not so much on and off, as
bright and dim.

The most common way to control leakage is to use special
libraries that have two versions of each gate (or most gates). One
is slow but has low leakage. One is fast but leaks since it never
truly turns completely off. On the critical path the fast leaky gates
are used; off the critical path the non-leaky slow gates are used.
Synthesis tools will choose the cells automatically based on the
timing constraints.

Taking this technique a little further was Blaze DFM whose tool
would make tiny adjustments to the mask data for transistors off

196

the critical path, lowering their performance but making them
leak a lot less. TSMC licensed this technology and Tela
announced recently that it was acquiring them.

The most common dynamic technique is clock gating. The old
rules used to be to do purely synchronous design, and clock every
flop on every clock cycle. If a register was only loaded with a
new value sometimes, then a multiplexor was added to recirculate
the old value back to the input so that when the flop was clocked
it would re-latch the same value as it was already holding. The
simplest form of clock gating is to replace those multiplexors
with a clock gating element (CGE) that inhibits clocking the flop
when the value doesn’t change. This doesn’t win you anything on
a single flop, but if it is, for example, a 32-bit register then 32
muxes can be replaced with a single CGE saving on area, and,
because the effective clock rate of the register is reduced, power.
By clever circuit analysis it is possible to find more complex
circumstances under which registers can be suppressed either
combinationally (the value really wasn’t going to change) or
sequentially (the value might bave been going to change but no
output from the circuit would noticed the change). All the
synthesis tools, most notably Synopsys Power Compiler, do the
mux replacement. Calypto automates the more extensive gating
approaches.

Next there is a whole spectrum of techniques that depend on
voltage islands. A voltage island is an area of the chip with its
own power supply. Obviously this has a major impact on
physical design since the island must correspond to a particular
region of the die. The first thing that can be done with voltage
islands is simply to power them with different supply voltages.
Those on a lower voltage will have lower performance, of course,
but they will also consume lower power, both static and dynamic.

Power down is another common technique. Voltage islands
which are not being used are turned off completely by turning off
their power supply. When you are not making a call on your cell-
phone, the gates used to process transmit and receive data are not
required and can be turned off. This needs to be done carefully,
or else the current inrush when the island is turned back on can
cause the voltage to drop elsewhere on the chip. Typically this

 197

means that the island must be powered up slowly using small
transistors and then finally brought up to operational level by
turning on much larger transistors. Powering down blocks is
always done under software control but the powered down block
needs to be isolated from the rest of the circuit so that its output
signals do not drift and cause crowbar current and waste power
elsewhere. There are no tools for automatically finding areas to
power down. The software not the netlist would be the place to
look. The CPF and UPF formats have extensive support for
power down.

As we get deeper below 100nm, the variability of processes gets
much wider. This means that the typical chip and the worst case
chip are getting further and further apart and so the penalty of
designing to worst case design, given that most chips are typical
by definition, gets larger and larger. Adaptive voltage scaling is a
way to handle this. Use on-chip circuitry to measure the actual
performance, and then lower the voltage (saving both dynamic
and static power) just the right amount that the chip still runs at
the correct speed.

One adaptive solution involving off-chip voltage regulators is
National Powerwise. They have put this in the public domain
since they make their money selling the off-chip voltage
regulators. Nanochronous builds copies of critical paths and uses
these to adapt the clocking to the environment (process corner,
voltage, temperature) so that the chip will automatically consume
less power but still run to spec as the voltage is lowered. Elastix
does something similar, adapting the performance of the chip as
the voltage is altered, while taking the process corner into
account. Handshake removes the clock completely and runs
asynchronously with whatever performance is appropriate given
the power supply voltage. Nanochronous is in Greece, Elastix is
in Spain, and Handshake is in Netherlands; it must be something
in the wine.

The next approach is to vary the voltage to islands while the chip
is being used, rather than having fixed, but different, power
supply voltages for each island. When the voltage is changed
under software control it is known as dynamic voltage and
frequency scaling. This is a technique that is talked about a lot

198

and used only a little, as far as I can tell. The idea is that if your
microprocessor (or whatever) is not doing anything very
important, why not run it slowly. And when it is in heavy
computation mode run it flat out. To do this is tricky though. To
slow it down the frequency must be lowered, and then (and only
then) the voltage can be lowered. To speed up, the voltage must
be raised, which takes time if it is not going to create a lot of
power-supply noise, and then the frequency can be bumped up.

A lot of power gets consumed in the clock tree itself. Certainly
30% and sometimes 50% of the total power. Azuro works on
laying this out and placing the gates more sensibly than is
typically done by the clock tree synthesis built into every place
and route tool.

Cyclos has another approach to reducing the 30% consumed in
the clock. They think that clocks are the wrong shape, being
square waves. If the clock was a sine wave then it could be
resonant if we added some inductors, and would not consume
power in the clock tree. That would be nice but the price is that
every clocked element needs to be adapted so it can work with a
sinusoidal clock rather than the usual rising-edge, falling-edge
square wave we are all used to.

No list of all companies in the power area would be complete
without Sequence, now a division of Apache, some of whose
ancestral companies were around for over 15 years. Their
primary focus is on measuring power, with or without vectors, at
netlist or RTL level. They are pretty much the standard tool for
this.

Multicore
As most people know, power is the main reason that PC
processors have had to move away from single core chips with
increasingly fast clock rates and towards multi-core chips.
Embedded chips are starting to go in the same direction too;
modern cell-phones often contain three or more processors even
without counting any special purpose ones used for a dedicated
purpose like mp3 decode. The ARM Cortex is multicore.

 199

Of course this moves the problem from the IC companies, how to
design increasingly fast processors, to the software side, how to
write code for multi-core chips. The IC companies have
completely underestimated the difficulty of this.

The IC side of the house has assumed that this is a problem that
just requires some effort for the software people to write the
appropriate compilers or libraries. But in fact this has been a
research problem for over forty years: how do you build a really
big powerful computer out of lots of small cheap ones? It is
unlikely to be solved immediately, although clearly a lot more
research is going on in this area now.

There are some problems, traditionally known as “embarrassingly
parallel,” which are fairly easy to handle. Far from being
embarrassing, the parallelism is so simple that it is easy to make
use of large numbers of processors at least in principle. Problems
like ray-tracing, where each pixel is calculated independently, are
the archetypal example. In fact nVidia and ATI graphics
processors are essentially multi-core processors for calculating
how a scene should be rendered (although they don’t use ray-
tracing, they use cheaper polygon-based algorithms). In the EDA
world, design rule checking or RET decoration are algorithms
where it is (fairly) easy to parallelize them: divide the chip up
into lots of areas, run the algorithm on each one in parallel and
take a lot of care on stitching the bits back together again at the
end.

But most problems are more like Verilog simulation. It is hard to
get away from having a global timebase, and then the processors
have to run in lock-step and the communication overhead is a
killer. Yes, in limited cases processors can run ahead somewhat
without violating causality (such as simulating fast processors
connected by slow Ethernet) and so reduce the amount of
required synchronization but the typical chip is not like that.

Years ago Gene Amdahl noted that the amount of speedup that
you can get by building a parallel computer of some sort is
limited not by what can be made parallel but what cannot. If, say,
10% of the code cannot be parallelized, then even if we take the
limiting case that the parallel code finishes instantaneously, the
maximum speedup is just 10 times. This has come to be known

200

as Amdahl’s law. So that is the first limitation on how to use
multi-core. To use hundreds of cores effectively then the amount
of code that cannot be completely parallelized must be tiny.

The next problem is that it is not possible to divide up the
problem at compile time and capture that decision in the binary.
If you have a loop that you are going to go around 1000 times to
calculate something for 1000 elements, then one way is to unroll
the loop, spawn the calculation simultaneously on 1000 threads
on 1000 processors and accumulate the results. If the amount of
calculation is very large compared to the overhead of spawning
and accumulating, this might be good. But if you only have two
processors, then the first two threads will go ahead and the next
998 will block waiting for a processor to become available. All
the overhead of spawning and accumulation and blocking is just
that, overhead that slows down the overall computation. How to
map computation to processors must be done partially at run-time
when the resources available are known.

The other big problem is that most code already exists in libraries
and in legacy applications. Even if a new programming paradigm
is invented, it will take a long time to be universally used. Adding
a little multi-threading is a lot simpler than completely re-writing
Design Compiler in a new unfamiliar language, which is
probably at least a hundred man-years of effort even given that
the test suites already exist.

There are some hardware issues too. Even if it is possible to use
hundreds of cores, the memory architecture needs to support
enough bandwidth of the right type. Otherwise most of the cores
will simply be waiting for relatively slow access to the main
memory of the server. Of course it is possible to give each
processor local memory, but if that is going to be effective those
local memories cannot be kept coherent. And programming
parallel algorithms in that kind of environment is known to be
something only gods should attempt.

I’ve completely ignored the fact that it is known to be a hard
problem to write parallel code correctly, and even harder when
there really are multiple processors involved not just the pseudo-
parallelism of multiple threads or processes. As it happens,
despite spending my career in EDA, I’ve got a PhD in operating

 201

system design so I speak from experience here. Threads and
locks, monitors, message passing, wait and signal, all that stuff
we use in operating systems is not the answer.

Even if the programming problem is solved with clever
programming languages, better education and improved parallel
algorithms, the fundamental problems remain. Amdahl’s law
limiting speedup, the bottleneck moving from the processor to the
memory subsystem, and the need to dynamically handle the
parallelism without introducing significant overhead. They are all
hard problems to overcome. Meanwhile, although the numbers
are small now, the number of cores per die is increasing
exponentially; it just hasn't got steep yet.

Our brains manage to be highly parallel though, and without our
heads melting, so there is some sort of existence proof of what is
possible. But, on the downside, we are really slow at calculating
most things and also pretty error-proon.

Internal development
One potential change to the way chips are designed is for EDA to
become internal to the semiconductor companies. In the early
days of the industry it always was.

Until the early 1980s there wasn’t really any design automation.
There were companies like Calma and Applicon that sold
polygon level layout editors (hardware boxes in those days) and
programs like Spice and Aspec that were used for circuit
simulation (and usually run on mainframes). Also there were a
couple of companies supplying DRC software, also typically run
on mainframes.

In the early 1980s, companies started to develop true design
automation internally. This was implemented largely by the first
set of students who’d learned how to design chips in college as
part of the Mead and Conway wave. Hewlett-Packard, Intel and
Digital Equipment, for example, all had internal development
groups. I know because I interviewed with them. Two startups
from that period, VLSI Technology (where I ended up working
when I first came to the US) and LSI Logic had ambitious

202

programs because they had a business of building chips for other
people. Until that point, all chips were conceived, designed and
manufactured internally within semiconductor companies. VLSI
and LSI created what we initially called USICs (user specific
integrated circuits) but eventually became known, less accurately,
as ASICs (application specific integrated circuits). It was the age
of democratizing design. Any company building an electronic
product (modems, Minitel, early personal computers, disc
controllers and so on) could design their own chips. At this stage
a large chip was a couple of thousand gates. The EDA tools to
accomplish this were supplied by the semiconductor company
and were internally developed.

First front-end design (schematic capture and gate-level
simulation) moved out into a 3rd party industry (Daisy, Mentor,
Valid) and then more of design with companies like ECAD,
SDA, Tangent, Silicon Compilers, Silicon Design Labs and more
moved out from the semiconductor companies into the EDA
industry.

At first the quality of the tools was almost a joke. I remember
someone from the early days of Tangent, I think it was, telling
me about visiting AT&T. Their router did very badly set against
to the internal AT&T router. But there was a stronger focus and a
bigger investment behind theirs and it rapidly overtook the
internal router. Since then almost all EDA investment moved into
the 3rd party EDA industry. ASIC users, in particular, were very
reluctant to use tools that tied them to a particular silicon
manufacturer since they didn’t want to get locked-in for their
next design. Since every semiconductor company wanted to get
into ASIC (even Intel had an ASIC group) and the ASIC flow
was pretty much standard (gate-level handoff and back-
annotation) the market exploded.

ASIC, in the sense of designs done by non-semiconductor
companies, has declined as levels of integration have gone up
(what was 5 chips is now 1) and as most designs that are not
power-sensitive have moved to FPGAs. So once again most
designs are done inside semiconductor companies where being
“locked-in” to in-house tools would not be an issue.

 203

The EDA industry invests approximately 20% revenue in R&D.
Maybe even 35% if past acquisitions were properly accounted
for. So there is somewhere around a 3 to 5 times cost
disadvantage. Also, it is generally accepted that producing a
generalized supported software product is at least 3 times (and
maybe much more) expensive than just developing a product for
internal use. With approximately 3 serious competitors in each
tool segment, the EDA industry needs to take about 30 times as
much money from the semiconductor industry as it would cost a
semiconductor company to develop a tool internally. That is 3
tools being developed, each at a cost 3 times the internal
development, with selling price of 3 times the cost of
development. This is significant since the number of large
semiconductor companies purchasing tools is also declining as
they consolidate and/or run into financial trouble. It is too early to
call predict exactly how that will pan out.

There is today no market for specialized tools for microprocessor
design. The tools are all internally developed. It is certainly
arguable whether it would be possible to produce a general tool
but the economics would not work in any case. There simply are
too few microprocessor design groups to pay the tax of the EDA
industry generality, overhead and profit.

There is no real market today for tools for FPGA design. The
tools are all (OK, mostly) internally developed. But the
economics wouldn’t work when there are only 2 or 3 FPGA
vendors. It is more economic for each vendor to develop their
own suite (not to mention that it better fits their business model).

One future scenario is that all semiconductor design becomes like
microprocessor design and FPGA design. Too few customers to
justify an external EDA industry, too specialized needs in each
customer to make a general solution economic. Design moves
back into the semiconductor companies. I don’t have much direct
knowledge of this happening, but Gary Smith is always pointing
out that it is an accelerating trend, and he sees much better data
than I do.

One other issue is that for any design tool problem (such as
synthesis or simulation) there is only a small number of experts
in the world and, by and large, they are not in the CAD groups of

204

semiconductor companies, they are in the EDA companies. I
predicted earlier that the world is looking towards a day of 3
semiconductor clubs. In that environment it is much more like the
FPGA world and so it is not far-fetched to imagine each club
needing to develop their own tool suite. Or acquiring it. Now
how many full-line EDA companies are there for the 3 clubs?
Hmm.

Process variation: you can’t ignore
statistics any more
I like to say that “you can’t ignore the physics any more” to point
out that we have to worry about lots of physical effects that we
never needed to consider. But “you can’t ignore the statistics any
more” would be another good rallying cry.

In the design world we like to pretend that the world is pass/fail.
If you don’t break the design rules your chip will yield. If your
chip timing works at the worst case corner then your chip will
yield (yes, you need to look at other corners too).

But manufacturing is actually a statistical process and isn’t
pass/fail at all. One area that is getting worse with each process
generation is process variability especially in power and timing.
If we look at a particular number such as the delay through a
nand-gate then the difference between worse-case and typical is

getting larger. The standard-
deviation about the mean is
increasing. This means that
when we move from one
process node to the next, the
typical time improves by a
certain amount but the worst-
case time improves by much
less. If we design to worst-case
timing we don’t see much of
the payback from the
investment in the new process.

An additional problem is that

 205

we have to worry about variation across the die in a way we
could get away with ignoring before. In the days before optical
proximity correction (OPC) the variation on a die were pretty
much all due to things that affected the whole die: the oxide was
slightly too thick, the reticle was slightly out of focus, the metal
was slightly over-etched. But with OPC, identical transistors may
get patterned differently on the reticle, depending on what else is
in the neighborhood. This means that when the stepper is slightly
out of focus it will affect identical transistors (from the designer’s
point of view) differently.

Treating worst-case timing as an absolutely solid and accurate
barrier was always a bit weird. I used to share an office with a
guy called Steve Bush who had a memorable image of this. He
said that treating worse case timing as accurate to fractions of a
picosecond is similar to the way the NFL treats first down. There
is a huge pile of players. Somewhere in there is the ball.
Eventually people get up and the referee places the ball
somewhere roughly reasonable. And then they get out chains and
see to fractions of in inch whether it has advanced ten yards or
not.

Statistical static timing analysis (SSTA) allows some of this
variability to be examined. There is a problem in static timing of
handling reconvergent paths well, so that you don’t
simultaneously assume that the same gate is both fast and slow. It
has to be one or the other, even though you need to worry about
both cases.

But there is a more basic issue. The typical die is going to be at a
typical process corner. But if we design everything to worst case
then we are going to have chips that actually have a much higher
performance than necessary. But now that we care a lot about
power this is a big problem: they consume more power than
necessary giving us all that performance we cannot use. There
has always been an issue that the typical chip has performance
higher than we guarantee, and when it is important we bin the
chips for performance during manufacturing test. But with
increased variability the range is getting wider and when power
rather than timing is important, too fast is a big problem.

206

One way to address this is to tweak the power supply voltage to
slow down the performance to just what is required, along with a
commensurate reduction in power. This is called adaptive voltage
scaling (AVS). Usually the voltage is adjusted to take into
account the actual process corner, and perhaps even the operating
temperature as it changes. Once this is done then it is possible to
bin for power as well as performance. Counterintuitively, the
chips at the fastest process corner may well be the most power
thrifty since we can reduce the supply voltage the most.

CDMA tales
It is very rare for a company to develop a new standard and
establish it as part of creating differentiation. Usually companies
piggy-back their wares on existing standards and attempt to
implement them better than the competition in some way. There
were exceptions with big companies. When AT&T was a big
monopoly it could simply decide what the standard would be for,
say, the modems of the day or the plug you phone would use.
IBM, when it was an effective monopoly in the mainframe world,
could simply decide how magnetic tapes would be written. I
suppose Microsoft can just decide what .NET is and millions of
enterprise programmers jump.

Qualcomm, however, created the basic idea of CDMA, made it
workable, owned all the patents, and went from being a company
nobody had heard of to being the largest fabless semiconductor
company and have even broken into the list of the top 10 largest
semiconductor companies.

The firs time I ran across CDMA it seemed unworkable. CDMA
stands for code-division multiple access, and the basic technique
relies on mathematical oddities called Walsh functions. These are
functions that everywhere take either the value 0 or 1 and are
essentially pseudo-random codes. But they are very carefully
constructed pseudo-random codes. If you encode a data stream
(voice) with one Walsh function and process it with another at
the receiver you get essentially zero. If you process it with the
same Walsh function you recover the original data. This allows
everyone to transmit at once using the same frequencies, and only

 207

the data stream you are trying to listen to gets through. It is
sometimes explained as being like at a nosiy party, and being
able to pick out a particular voice by tuning your ear into it.

Years ago I had done some graduate work in mathematics, so I’d
actually come across Walsh functions and so the idea of CDMA
was very elegant. However, my experience of very elegant ideas
is that they get really messy when they meet real-world issues.
Force-directed placement, for example, seems an elegant concept
but it gets messier once your library cells are not points and once
you have to take into account other constraints that aren’t easily
represented as springs. So I felt CDMA would turn out to be
unworkable in practice. CDMA has its share of complications to
the basic elegant underpinning: needing to adjust the transmit
power every few milliseconds, needing to cope with multiple
reflected, so time-shifted, signals and so on.

At the highest level what is going on is that GSM (and other
TDMA/FDMA standards) could get by with very simple software
processing since they put a lot of complexity in the air (radio)
interface and didn’t make optimal use of bandwidth. CDMA has
a very simple radio interface (ignore everyone else) but requires a
lot of processing at the receiver to make it work. But Moore’s
law means that by the time CDMA was introduced, 100 MIPS
digital signal processors were a reality and so it was the way of
the future.

Of course, my guess that CDMA was too elegant to be workable
was completely wrong. Current and future standards for wireless
are largely based on wide-band CDMA, using a lot of
computation at the transmitter and, especially, receiver to make
sure that bandwidth is used as close to the theoretical maximum
as possible.

But before CDMA turned out to be a big success Qualcomm was
struggling. In about 1995 VLSI tried to license CDMA to be able
to build CDMA chips as well as the GSM chips that they already
built. Qualcomm had “unreasonable” terms and were hated in the
industry since they charged license fees to people who licensed
their software, people who built phones (even if all the CDMA
was in chips purchased from Qualcomm themselves) and people
who built chips (even if they only sold them to people who

208

already had a Qualcomm phone license). They were hated by
everyone. Now that’s differentiation. The royalty rates were too
high for us and we ended up walking from the deal.

I was in Israel 2 days from the end of a quarter when I got a call
from Qualcomm. They wanted to do a deal. But only if all
royalties were non-refundably pre-paid up front in a way they
could recognize that quarter. Sounds like an EDA license deal!
We managed to do a deal on very favorable terms (I stayed up all
night two nights in a row, after a full day’s work, since I was 10
hours different from San Diego, finally falling asleep before we
took off from Tel Aviv and having to be awakened after we’d
landed in Frankfurt). The license was only about $2M or so in
total I think, but that was the relatively tiny amount Qualcomm
needed to avoid having a quarterly loss and impacting their stock
price and so their ability to raise the funds that they would need
to make CDMA a reality. Which they proceeded to do.

Another look at internal
development
In the early 1980s VLSI design techniques were being
disseminated outside a handful of semiconductor companies
where the priestly knowledge had previously been secreted. VLSI
Technology and LSI Logic (primarily) invented ASIC design,
whereby customers did part of the design and the semiconductor
company (we called them foundries then, but they were not
exactly the same as what we call a foundry today) did the rest. A
lot of design tool development was internal. There was a good
reason for that, namely that there was no 3rd party EDA industry
providing the necessary tools, and so no tools meant no product
to fill the fab. Remember that if you have a fab you are like an
hotel; every wafer start slot with no actual wafer to start is like a
plane with an empty seat. Once the slot has passed or the plane
takes off, it's gone for ever.

So VLSI Technology and LSI Logic (and HP, Intel, TI and
everyone else) had a large amount of internal CAD. It was
differentiation to some extent, and there wasn’t really an
alternative. The CAD teams were staffed with top rate engineers,

 209

many of them M.Sc. and Ph.D. students from the first cohort of
people from universities starting to teach and research VLSI
design.

Then came the first wave of EDA companies, the DMV—Daisy,
Mentor and Valid. They provided systems for doing some front
end design, basically schematic capture and simulation. The
standard ASIC methodology was to do design to netlist, ship the
netlist to the semiconductor vendor who would do place and
route (either as a standard-cell design or a gate-array) and provide
back annotation of capacitance values (we didn’t worry about
resistance back then, timing was dominated by capacitance) for
resimulation and signoff.

This design flow didn’t work very well at first. Wilf Corrigan,
CEO of LSI Logic famously complained that the EDA industry
took all the profit from ASIC. Customers would buy tools but the
semiconductor company would only get their money once a
design could get through the flow. So much of the heavy lifting
to mature the flows and make them workable was done by the
semiconductor companies not the EDA companies. The next
generation of EDA companies was SDA and ECAD who merged
to form Cadence (this was long before Synopsys). The Japanese
semiconductor companies adopted 3rd party EDA vigorously,
since they had very limited internal development and this allowed
them to get into the new markets that ASIC was opening up.

The writing was on the wall for internal EDA, at least in the long
term.

So the EDA part of the business split into an external part, the
EDA industry, and an internal part, the CAD groups. By and
large the CAD groups were training grounds for entry level
engineers, some engineers with deep design experience and,
usually, first rate management (often drafted in from the design
side of the company to keep the internal politics calm). They
knew how to use tools but not how to create them. The internal
tool developers migrated from the semiconductor companies into
the EDA companies.

The two exceptions to this, companies that kept large internal
development groups, were Intel and IBM who still, to this day,

210

develop significant amounts of EDA software for their own
internal use. But it is very expensive to do this, and even they
don’t know how useful it is. I once asked someone in Intel’s
Design Technology (their internal CAD/development group)
whether their routers were better than the EDA industries. He
admitted they didn’t have a clue; they had no bandwidth to even
take a look at what was available externally.

So I don’t see internal development being a major force since the
economics don’t work very well. However, that could change
with consolidation of both EDA and semiconductor companies,
and especially if a semiconductor company jump-started internal
development by acquiring one or more EDA companies.

 211

Chapter 5: Finance and
Investment

Venture capital for EDA is dead
xx

There have been a many recent articles about venture capital and
how it is changing. They have focused on venture capital being
broken since many funds are losing money and even that venture
capital, in aggregate, is investing more than it is taking out in
exits. There are short-term problems with the current downturn
too. For example, I’ve heard of limited partners (the actual
investors) refusing capital calls when a fund wants to make an
investment. As a result, VCs have essentially suspended new
investments for Q4 of 2008 and Q1 of 2009. Of course one of the
biggest problem of all is that the market for IPOs is closed
completely.

In the EDA world venture capital has been broken for some time.
VC funds are simply too large and too risk averse. In effect they
have become private equity banks. The reason size matters is that
a $500M or $1B fund simply can’t make $5M or $10M
investments. A partner can only serve on a limited number of
boards and funds of this size would need to make hundreds of
investments. Instead, they need to focus on making fewer big
investments. However, early stage investments simply don’t
require that much money, and the amount of money that they do
require is continuing to decrease in the software world. A cynic
might look at the enormous VC investment in cleantech,
especially solar, as being attractive simply because they require a
lot of money to get to manufacturing. On the other hand, Web 2.0
and EDA startups require little money, often less than $10M, to
get to revenue.

The herd dynamic means that VCs all either want to invest in a
sector or don’t. A VC told me once that “venture capitalists make

212

sheep look like independent thinkers”. So if the big guys like
Sequoia or Kleiner-Perkins are avoiding a sector (perhaps just
because their funds are too simply big for the sector or the limited
partners have directed them) then everyone else seems to avoid it
too. EDA has been out of favor for some time since each startup
does not address a “billion dollar market” nor is it not going to be
a phenomenon (although without much revenue) like Facebook
or mySQL.

In the software world, the cost of hardware is basically zero (we
all have a computer already and even buying a new one is
something we can afford without a VC) and software
productivity is improving all the time. In the web world this is
driven by languages like Python and Ruby, along with
environments like Django or Rails. And for web infrastructure
there is Amazon S3 and Google App Engine. All the costs are
variable so big upfront investment isn’t needed even to scale to
millions of users. In the EDA world this is driven by the same
languages, along with infrastructure like Open Access that mean
that a startup doesn’t need to spend its first year or so building its
underlying scaffolding, it can focus immediately on code that
adds real value to users.

Paul Graham of Y-combinator thinks that VCs have become
redundant in the internet space. In EDA the amount of money
required is low enough that personal investment and private
investors are sometimes enough to get to positive cash-flow
without any venture capital at all. Altos and Apache are both
profitable and were funded entirely privately. Denali has been
private and reportedly very profitable for a long time; they
certainly throw a good party.

How long before a venture capital fund decides to buy a
company, removing any semblance of being genuinely different
from private equity banks?

 213

Venture capital for your
grandmother
Like many of us in Silicon Valley, I often encounter people (hi
Dad!) who don’t understand venture capital. I don’t mean all the
details, I mean just the basic way investment is done in a startup.
Often, even employees in startups don’t understand it either.
Here’s how I explain it.

Let’s say you’ve got a good idea for a company, and you have
done some work on it to produce a prototype. Maybe at this stage
there are two of you. You have the prototype, the team (the two
of you) and a business plan. Let’s say everyone agrees it is worth
$1M at this point. We’ll ignore how that valuation was arrived at,
although it is somewhat like buying a house, you (seller) want a
higher valuation and the VC (buyer) wants lower so the valuation
depends on the going rate for that sort of company and somewhat
on how desperate you are to sell and how enthusiastic the VC is
to buy. So you and your partner each have stock in your brand
new company worth $500K. But you can’t just sell the company
at this stage, companies like that don’t have any buyers at all.
You need to make it more successful first.

So you decide you need some investment money, so you can pay
yourselves and hire some more employees. You convince a
venture capitalist that your company is going places and he or she
wants to put in $500K. Everyone agreed that the company is
worth $1M before this happens. This is called the pre-money
valuation. The VC wires $500K to your bank account and you
give them stock for 1/3 of the company. Suddenly your company
is worth $1.5M, consisting of $1M for the company as it was the
day before, plus another $500K sitting in the company bank
account. This is called the post-money valuation. So you and
your partner each own 1/3 of the company and the VC owns 1/3
of the company. But the valuation is higher so your 1/3 is worth
$500K, exactly the same as your 1/2 was worth the day before.
You’ve neither lost nor gained anything.

So what have you given up? A share of the future gains. You
used to own 100% of the company with your partner, now you

214

only own 2/3 of the company. If the company suddenly becomes
worth $60M then you each have $20M and the VC has $20M (the
VC has preferred stock, which is different from what you and
your partner probably have, so this might not be precisely
accurate but it is close enough). What you gave up was that if the
company was suddenly worth $60M before, you and your partner
would have $30M each. But realistically, that wasn’t going to
happen because you didn’t have enough money on your own to
fund the company over time. So if this scenario plays out you get
a nice payout. But, of course, if the company becomes worthless
then everyone’s share goes to zero. 1/3 of zero is zero.

You might assume that if the company nearly goes bankrupt and
is sold for just, say, $300K that you’d have 1/3 of it, namely
$100K. But that is where the biggest difference between
preferred stock and your stock comes to light. The preferred
stock is so called because it gets preferential treatment and in this
scenario the VC gets all of the money. You have a loss of $500K
but then you never put in any real money so it is a paper loss. The
VC has a very real loss of $200K since they put in $500K, you
spent it, and the company pretty much failed.

Next, full-ratchet anti-dilution provisions and piggy-back rights.
Well, maybe not.

EDA: not boring enough
EDA is fun. Innovation is fun and not many businesses require as
much innovation as EDA. Working in an EDA startup in
particular was (and still can be) a lot of fun because the ratio of
innovation to meetings, company politics and the rest is much
higher.

But one effect of this has been that too many people want to start
EDA companies. It is not as bad as Web 2.0 companies, and with
the current freeze in EDA investment it is over for the time-being
and maybe forever.

One piece of advice I remember seeing, I forget where, is never
to do a job that has significant non-monetary compensation for
doing it. Too many people will want to do it for those other

 215

reasons. Everyone wants to open a restaurant, write a book, and
be an actor.

The company where my son works in San Francisco advertised
for a graphic designer on craigslist. They took the ad down again
after over 200 people had applied for the job. They took the ad
down after…four hours. Too many people want to be graphic
designers because they think it is cool, or arty, rather than
because it is a profitable business to which they are especially
well suited.

The person sitting next to me on a flight to Chicago once told me
that he was in the concrete business. He had a dozen concrete
plants in towns you’ve never heard of in unfashionable parts of
the mid-West. The economics were simple. A town can support
one concrete plant but not two. Consequently the owner of a
concrete plant has a sort of monopoly. Sure, a contractor can buy
concrete from another plant, but that is one town over, perhaps an
additional 50 miles round trip for the concrete truck, a cost that
makes it non-competitive. His plants returned over 30% of their
capital every year. Concrete is far more profitable than EDA and
partly because it is so boring.

If that guy was our Dad and we inherited the business, I’m sure
we could all run it. But we don’t even consider businesses like
that because technology is more exciting. EDA is not badly paid
by any means, but considering just how hard it is and how much
training and knowledge is required it is not that well-paid either.

I’ve read (but not verified) that one very well paid group of
consultants are people who do Cobol programming. Everyone
wants to program next generation web applications using AJAX
and Python, not some crusty programming language designed in
the 1950s. How much further from the trendy cutting edge can
you get.

Bill Deegan, a friend of mine, does the equivalent in the EDA
world. Not the sexy EDA algorithms for him, he creates and
maintains the build and Q/A systems without which the
programmers don’t have a product. Usually his clients bring him
in when the build system has been ignored by the hot-shot
programmers for so long that they can barely build their product

216

never mind release it to a customer. He describes it as like
garbage collection (the kind with a truck, not recovering unused
program memory). It’s not glamorous but it needs to be done, and
done well, and just like garbage collection, things get really
messy if it isn’t. You won’t be surprised to know that he is rarely
idle.

One hit wonders
Venture capitalists have the concept of a zombie. Just like in the
movies, a zombie company is one of the living dead. It is a
company that is not burning through cash, and so is not going to
go bankrupt if starved of further investment. On the other hand, it
is not doing well enough that it has any exit possibilities. Venture
capitalists have a fuse burning on their funds though, and
generally 7 to 10 years after they first raised money for the fund
they want to be able to close it down and do the final accounting:
so many companies were sold for nice gain, so many ran out of
money and so on.

But zombies make this difficult since they are not dead yet and
could even go on for years growing slowly, successfully funding
operations out of revenue but never achieving a growth rate that
is going to interest another company in a merger or acquisition,
never throwing off enough profit to make a merger with anyone
accretive.

In this scenario, VCs will push companies to try something,
anything, that might create success, even with the attendant risk
of total failure. VCs like the answer to be clear even though the
employees would rather simply have a job for a long time.
Simply winding up the company is unattractive since, say, $1M
for a technology sale is so close to zero as to be the same thing,
so if there is any risky chance of quickly making the company
genuinely successful that is more attractive.

Public companies can get into this state too, not doing well
enough to go anywhere but not doing badly enough to die. Their
stock price languishes since there is no chance that anyone is
going to try and acquire the company as for its running business,

 217

and little chance that the company is going to break out and
become a star performer.

For example, at one point soon after I left VLSI Technology their
market cap (their share price times the number of shares
outstanding) was not only less than their book value (the value of
all their capital equipment, buildings, investments and cash) but
less than the cash they had in the bank. In theory it should be
possible to buy the company using its own cash (ignoring any
premium).

This is not just like buying a house with no money down, it is
like buying a house for $500K when you know there is $600K in
the master-bedroom closet. It is a vote of no-confidence by the
shareholders, an acknowledgement that the company is in the
value destroying business. Of course VLSI at that cheap price
was attractive and Philips Semicondutors (now NXP) bought it
for its wireless business with Ericsson and people who knew how
to get an process node into production a year or two faster than
NXP was able to do with their conservative approach.

A company that is currently in this sort of shape is California
Micro Devices (CAMD). Their stock price today is $2.18 with
23.55M shares outstanding. So their market cap is $51.35M.
Their last four quarters of revenue totaled just over $60M on
which they lost less than $1M. They can go on for a long time
like that.

But they have $51.6M of cash and $66.9M of current assets
(accounts receivable, inventory, short-term investments) and only
$10.3M of debt. So their market cap is equal to their cash, and
about half the value of simply winding up the company (probably
not all the current assets would be realizable in this scenario
though). It is like the house with the money in the closet.

Everyone knows that if they run the business as usual they will
simply waste that cash. There is really no reason not to simply
wind up the company and return the money to the shareholders,
giving them about a 100% premium. But at the same time
everyone knows they are not going to do that which is why the
stock price does not reflect the break-up value.

218

Fabless semiconductor companies often have a single hit and
make a lot of money on that first chip. Portal Player, who made
the sound chip in the first iPods are a good example. But, if they
are not acquired, they sometimes go on to burn that money trying
to follow up their first hit with a second only to discover like
Little Eva (Locomotion) or Norman Greenbaum (Spirit in the
sky) that they are a one-hit-wonder.

Will you greenlight my chip
I already took a cursory look at the fact that the semiconductor
industry is going to restructure, partially driven by the current
economic downturn but mainly by the fact that almost all
semiconductor companies are going to become completely
fabless. What we have got used to calling IDMs (integrated
device manufacturers) are just going to be large semiconductor
companies that used to have fabs. This trend is driven by two
things: the economic size of fab has got so large that it exceeds
most semiconductor companies’ needs; and the cost of process
development has got too high for any single semiconductor
company (except Intel, TSMC and some of the DRAM guys) to
be able to afford it.

Having a fab to fill means that a semiconductor company has a
huge fixed cost that has to be amortized over all the wafers
actually manufactured. This puts a huge premium on having the
fab filled. Just like a hotel cannot inventory rooms, they are either
occupied tonight or not, a fab cannot inventory wafer starts.
Either a wafer was started or it was not, and a wafer not started is
one that doesn’t carry its share of the overhead of depreciating
and staffing the fab. So semiconductor companies have grown up
to contain collections of divisions that together require all the
wafers a fab can produce. If there are not enough then it is
attractive to acquire further product lines.

Once a semiconductor company has no fab, then the particular
collection of businesses that make it up have very little reason to
be grouped into the same company. Further, it makes very little
sense for a semiconductor company to pay a big premium to
acquire a new product by buying a fabless semiconductor

 219

company since it no longer has a fab to fill and so doesn’t really
have any economies of scale. Sometimes, as with TI and digital
signal processing, there is company-wide expertise that cuts
across a many products. But often not. For instance, it is
interesting that TI was attempting to sell its wireless business (it
gave up because it couldn’t get a good price) despite wireless
having a significant DSP component.

One possible future scenario is that many of the semiconductor
companies of today will disintegrate since they don’t have a lot
of reason to keep product lines together. In fact the whole idea of
a product line may start to be obsolete since so much of a chip is
now externally sourced IP, both semiconductor IP and software
libraries. I also looked at how some semiconductor companies are
one-hit-wonders, with a successful chip that fills their cash
position, that they then gadually burn through.

An unlikely place to look for parallels to chip design is the movie
industry. Back in the middle of the last century, the studios were
like IDMs. They had an entire infrastructure for making movies
that had to be amortized by making lots of movies (to fill the
studio, like filling the fab). Today, movies are not made like that.
They are made by virtual companies that are put together
expressly to make a single movie, almost everyone is a
subcontractor not an employee of the movie, and the company is
disbanded when the movie has been made and the profits have
(or, often, have not) been distributed to the investors.

Chip design could go like that, with an individual chip being built
by a team of subcontractors assembled for just that purpose and
manufactured by a foundry, probably TSMC. If the chip makes a
lot of money the investors get a return; otherwise not. associated
with keeping a company together just because it had a hit product
and no guarantee that the next product will be another hit. Better
to distribute the profits and fund the next chip as a completely
independent project. Every chip is a one-hit-wonder by design.

So, do you want to green-light my chip, Mr Spielberg?

220

Crushing fixed costs
There is a trend that the current downturn is only going to
accelerate: to turn fixed costs into variable costs. Often this is
what is behind outsourcing of some capability. Sometimes it is
driven purely by either cost (let’s do it in China) or core-
competence considerations (do we really need to run our own
cafeteria?) but often it is driven by a desire to switch an inflexible
fixed cost for a variable cost. Instead of owning a fab (fixed cost)
then let’s just buy wafers from TSMC (variable cost).

There are two big problems with a large expensive fixed cost.
One is just that it is expensive and so it ties up a lot of capital (or
a lot of expense budget for a “fixed” cost like employees) for
which there may well be more profitable uses. Second, the fixed
cost usually puts in place a fixed capacity of some sort, and that
capacity risks always being either more than the market need is,
or less than the market need is.

TSMC makes money as a foundry, of course (well, maybe not
right now). It’s scale is enormous so it may well be able to make
money selling wafers for the same price as you can get wafers out
of your own fab, even if you have one running at capacity. But
that’s the point. Your fab is never running at capacity. It is either
below capacity, in which case wafers cost more than the
“standard price” because all that depreciation needs to be spread
over fewer wafers. Or else it is above capacity, meaning that
there are wafers that you could sell profitably that are not being
built (if your planning is poor, you may even have orders for
them, and commitment dates that you are going to miss). Even if
you pay a price higher than your standard price for wafers, it is
worth a lot to avoid having to absorb fab variances when the fab
is not full, and to gain the capability to sell more than capacity
when you have a strong order book.

In the web space, you no longer need to build your own high-
capacity server farm. Amazon, Google and others will sell you
server time and disk space on a purely variable cost basis. If you
website becomes a big hit then scaling should be much more
straightforward.

 221

In some ways you can look at Amazon S3 or TSMC as
companies that are in the business of making the up-front
investment in fixed cost assets and then charging you a variable
cost to use them. Lots of other companies do the same. It doesn’t
cost an airline anything (well, not much) extra to fly an extra
passenger; it is basically in the job of taking airplanes (fixed cost)
and working out good business models to sell trips (variable
cost). Cell-phone companies largely have a network of base-
stations (fixed cost) and work out how to charge each customer
for using them (variable cost). It’s not always obvious what the
best model is for making the cost variable: do you charge data per
megabyte, or unlimited data for a month? How does the money
get split when you are roaming on other people’s networks? Is
data the same price as the digitized data underlying a voice-call?

When supply chains disaggregate, usually one thing that happens
is that non-core areas, especially ones involving fixed costs such
as equipment or full-time employees, are divested. New
companies spring up to specialize in providing that non-core
activity as their core competence. Ross Perot made his fortune at
EDS taking companies’ IT departments off their hands and
created a big specialist company to provide those services.
Semiconductor companies get rid of their EDA groups and an
EDA industry comes into existence (Cadence, Synopsys, Mentor
etc). Semiconductor companies get rid of some of their fabs and a
foundry industry comes into existence (TSMC, UMC, Chartered
etc). Semiconductor companies get rid of their technology
development (TD) groups and rely on the foundry industry for
that too. One interesting area of debate right now is whether
design is next, and how much of design. Nokia already moved its
chip development group into ST. eSilicon, according to Jack
Harding its CEO, is doing very well. Faraday is (or at least was)
doing about 200 designs a year.

When semiconductor companies design chips about as often as
they reconfigure buildings, does it make any more sense to have
their own not-very-expert employees floor-planning their chips
than their own building architects floor-planning their offices.

222

Technology of SOX
Sarbanes-Oxley, often abbreviated to SOX, is a set of accounting
rules that were introduced by congress in response to the
accounting scandals of Enron, Worldcom and their like during
the dotcom boom. It is a mixture of different regulations, some
concerned with how companies are audited, some concerned with
liability a CEO and CFO have for irregularities in their
companies, and so on. Many provisions are completely
uncontroversial.

But the biggest problem, especially for startups, comes about
from section 302 and 404. Section 302 says that companies must
have internal financial controls, that the management of the
company must have evaluated them in the previous 90 days.
Section 404 says that management and the auditors must report
on the adequacy and effectiveness of the internal controls.

In practice this means that auditors must repeatedly go over every
minute piece of data, such as every cell in a spreadsheet, every
line on every invoice, before they can sign off. For a small
company, the audit fees for doing this are a minimum of $3M per
year. For larger companies the amount grows, of course, but
slowly so that it is much less burdensome for a large established
company (where it might be 0.06% revenue) than for a small one.

Only public companies are required to comply with SOX so you
could argue that it doesn’t matter that much for a small venture
funded startup. At one level that is true. But it has also meant that
a company has to be much larger to go public.

In the past, an EDA company with $20M in revenue and $3M in
profit (with good growth) could go public. But now a private
company like that must comply with SOX to go public, so that
$3M cost suddenly hits and the company has $20M in revenue
and no profit at all. It must wait until it is, perhaps, $80M in
revenue with $12M in profit (which would have been $15M
without SOX). In EDA, in particular, this is extremely difficult to
achieve with a single product since most sub-markets are not that
large. In effect, EDA companies can no longer go public.

 223

This applies to many venture-backed startups in whatever
industry. Since the introduction of SOX most IPOs have taken
place in either London or Hong-Kong. It is controversial just how
much of that is directly due to SOX but clear that a lot of
companies that could have gone public in the past in the US have
not done so, and as a result have been acquired for lower
valuations that would otherwise have been the case.

In the early 2000s (SOX was passed in 2002) the stock market
was not friendly to IPOs as it recovered from the downturn. But
venture backed IPOs in 2005 and 2006 were way below what
they were in the 1990s, and Q2 2008 was the first quarter in 30
years in which no venture-backed IPOs took place in the US.
This has been another reason that VCs are rarely willing to invest
in EDA companies.

EDA and startups: $7M to takeoff
A startup EDA company needs about $7M in bookings to become
self-sustaining and not require another round of external funding.
Curiously, it doesn’t seem to depend all that much on the product
provided there is really a market out there, which, of course is by
no means a given. And more funding can always be an
accelerator to growth even if slow growth would have been
possible without it.

The R&D team should be about 10 people. It will be less in the
early days but it shouldn’t really be more unless the company
truly must develop a range of products in parallel. With more
than 10 people, engineering will be off developing a range of
products even if that isn’t the plan!

With a CEO and another “person” in the form of an accountant,
an office manager, a little marketing (they may be one person or
more likely a few people part-time) that makes a total of 12-13
people, which is a fixed cost of around $2.5-3M per year. A
single sales team is around $800K-1M per year. With that
headcount in place it takes about $3.5-4M to break even.

But a sales team only brings in $2M so $3.5M is more than one
sales team can bring in so we need a second, at another $800K-

224

1M pushing the breakeven up to $4.5M. This is just about doable
but more likely a third sales team will be required, pushing
revenue to $6M and expenses to $5.5M. Add in some
inefficiencies in training salespeople, filling the funnel and the
rule of thumb is that you need to get to about $7M to become
cash-flow netural and the company start to be able to fund its
own growth, albeit slowly.

But breakeven isn’t the end goal, being profitable enough to have
options is. Then we can be acquired, or continue to grow the
business or even just pay our shareholders nicely out of the
profits. This means getting the business up to about $10-11M,
which means about 5 sales teams. The 5 sales teams will cost
about $4-5M, leaving $6M. That will pay the $3M original (non-
sales) fixed cost with $1M for some additions to the corporate
team: a marketing person, maybe some non-bag-carrying sales
management, and after a couple of years somebody might want a
pay raise. That leaves $2M to either take as profit or use to fund
further growth, start a second product and so on.

All of this makes one big assumption. That the product is really
ready at the point that the channel expenses are ramped up. It
assumes that each salesperson rapidly makes it to the $2M per
sales team level. This is where companies die though. If the sales
teams are added too early then they will burn all the cash. If the
product is not ready for the mainstream then the sales guys will
not make it to the $2M level and burn all the cash. But if
everything is in place then the company can get to $10M rapidly.
The first year I was at Ambit we did $840K in revenue; the
second year, $10.4M.

This is the point at which a company is very attractive for
acquisition. It has traction in the market ($10M in sales and
growing), the technology is proven (people are using lots of it;
look, $10M in sales), the acquisition price hasn’t got too
expensive yet (only $10M in sales), it is probably the market
leader in its niche ($10M in sales and growing). Of course if the
company continues to grow it will typically take in more
investment at this point in order to grow even faster. Value of a
software company is some multiple of forward earnings, and the
greater the growth the greater the multiple.

 225

EDA startups: channel costs $6M
I’ve put together several business plans for EDA startups once
the product is ready for market. One question is always how
much money needs to be raised. The answer always turns out to
be about $6M.

When you put together a spreadsheet to show how the bookings
will build up, there are two factors to which the amount of money
turns out to be very sensitive:

How long after you hire a salesperson before they start to
produce revenue?

How fast does a salesperson ramp up to “full power”?

The answer to these two questions governs how much you need
to invest in a sales team before they are a net positive for the
company, and the total and timing of that investment governs
how big a hole you have to cover and thus how much money you
need to raise.

You might think that how big you plan to get is a critical
variable, but in fact the answer is about a $50M run-rate after 5
years. If you don’t have a plan like this then nobody will fund
you (they probably won’t anyway at present, but let’s leave that
to one side). You almost certainly won’t grow that fast, and
everyone knows it, but they will “take a haircut” to any numbers
you give them anyway, so you’d better play along and give them
big ones.

Other assumptions you’d better bake in. Any bookings you have
will come in the last week of the quarter. This means that any
cash associated with that order will not come until the following
quarter. So every quarter, for every sales team, you need to pay
all their salaries without the cash from the business they are
generating that quarter to offset those expenses.

Each salesperson needs two application engineers to be effective.
Or at least 1½. This means that a sales team costs approximately
$800K per year in salaries, travel and so on, which is $200K per
quarter, perhaps a little less if you don’t have the full 2 AEs per
salesperson.

226

As for sales productivity, at capacity a sales team brings in
$2M/year. If you put in much more than this then you are simply
being unrealistic. If you put in much less you’ll find that the
business never gets cash-flow positive.

EDA tends to have a 6 month sales cycle. So normally a new
salesperson won’t close business in less than 6 months, and
probably 9 months (3 months to understand the product and set
up initial meetings, 6 months of sales cycle). I like to use a ramp
of $0, $0, $250, $250, $500 for the first 5 quarters, which
assumes a salesperson sells nothing for two quarters, is at half
speed for two quarters and then hits the full $2M/year rate. Later
this may be conservative since a new salesperson can inherit
some funnel from other existing salespeople in the same territory
and so hit the ground if not running then at least not at a standing
start. In the early days it might be optimistic since I’ve assumed
that the product really is ready for sale and it is just a case of
adding sales teams. But realistically it probably isn’t.

So those are the variables. In 5 years you need to be at $50M
which means about 25 sales teams at the end of year 4 (because
only those sales teams really bring in revenue in year 5). Some
may be through distribution, especially in Asia, but it turns out
not to make all that much difference to the numbers.

In the meantime, the rest of the company has to be paid for and
don’t directly bring in revenue. So if you ramp sales too slowly,
the rest of the company will burn more money in the meantime.
This makes the model less sensitive than you would expect to the
rate at which you hire sales people, within reason.

If you hire people too fast on day one, then the hole gets huge
before your first teams start to bring in any money to cover the
cost of the later guys. You need to get to about $7M of bookings
before things get a bit easier and the early salespeople are
bringing in enough to cover the costs of the rest of the company.
However, if you bring in people too slowly then you will not get
to a high enough number in the out years. The trick is to hire in a
very measured way early and then accelerate hiring later. This
will give a hole of about $4-5M meaning you should raise about
$6M to give yourself some cushion to cover all the inevitable
delays.

 227

FPGA software
Why isn’t there a large thriving FPGA software market? After
all, something like 95% of semiconductor designs are FPGA so
there should be scope for somebody to be successful in that
market. If the big EDA companies have the wrong cost structure,
then a new entrant with a lower cost structure, maybe.

In the early 1980s, if you wanted to get a design done then you
got tools from your IC vendor. But gradually the EDA market
came into being as a separate market, driven on the customer side
by the fact that third-party tools were independent of
semiconductor vendor and so avoided the threat of paying
excessive silicon prices due to being locked into a software tool
flows. Once the 3rd party EDA industry captured enough of the
investment dollars then they could advance their tools much
faster than any single company and the captive tool market was
largely doomed.

For FPGAs that is not the case. If you want to do a design with
Xilinx, then you get tools from Xilinx. With Altera, tools from
Altera and so on. Yes, there are some tools like Synplicity (now
part of Synopsys) and Mentor’s FPGA suite, but they are focused
only on the high end. But it is hard to make money only at the
high end. When, over time, the high end goes mainstream then
the FPGA vendors produce good-enough tools at free/low prices.
So the R&D costs need to be recovered from just those few high-
end users since the tools never become cash cows like happens
with IC design tools for any particular process node as time
progresses. Like the red queen in Alice through the Looking
Glass, it takes all the running one can do to stay in the same
place.

There may be change coming as more and more FPGA designs
are actually prototypes for ASIC designs, or might want to be
cost-reduced into ASIC designs and so on. This means that
people want to use the same tools for ASIC and FPGA design,
and on the surface is one reason Synopsys acquired Synplicity.

One other issue is that it is FPGA architectures and their tools are
more intimately bound together than with IC designs. It is a dirty

228

secret of synthesis (and maybe place and route) that despite the
lower price point, FPGA synthesis is harder, not easier, than
mainstream synthesis for standard-cell libraries. Solving the
general problem for all the different varieties of FPGA
architectures seems to be extremely costly. By contrast, Xilinx
only has to build tools that work with Xilinx and can ignore that
its algorithms might not work with Altera’s arrays.

But probably the biggest factor is that there are not enough FPGA
companies. If there were a dozen FPGA companies then enough
of them would compete by supporting a 3rd party FPGA tool
industry and eventually the investment there would overpower
the companies that tried to keep it internal. This is just what
happened when the Japanese and everyone else tried to get into
ASIC. They had no internal tools so they leveled that playing
field by making Daisy/Mentor/Valid and subsequently Cadence
then Synopsys successful. Eventually companies like VLSI
Technology and LSI Logic felt they should try and spin out their
tools and adopt EDA industry tools.

It is unclear whether this was good financially. I told Al Stein,
CEO of VLSI, when we spun out Compass that he shouldn’t
expect his tool bill to go down. He would pay more to the EDA
industry that Compass was entering (some of it to Compass) than
he had been paying just to fund the division that became
Compass. And this turned out to be a true prediction.

For ASIC designs today, IBM’s backend tools are the only ones
internally developed. But they are #1 in cell-based design so it is
hard to argue that the strategy of keeping that development
internal is demonstrably bad.

And Xilinx and Altera are doing OK keeping their tools internal.

Wall Street Values
Wall Street does a terrible job of valuing investment. I’ve talked
earlier about how financial accounting standards do a poor job of
capturing the value of many modern companies in their balance
sheet. But Wall Street is driven by people who only know how to
read a balance sheet (and a P&L which is just an explanation of

 229

changes to the balance sheet) and they act as if the balance sheet
is the truth.

As a result, Wall Street loves acquisitions and hates investment,
even if the investment is much cheaper than an acquisition.

Assume bigCo acquires startupCo for $100M. FASB considers
the acquisition to have something to do with the business going
forward as if it were a piece of land just purchased that needs to
be carried on the books and have its value adjusted from time to
time. But in reality it should adjust the prior quarters’ P&Ls to
reflect the fact that all that R&D that was done should really have
been set against revenue back then. When we were allowed to
account for acquisitions through pooling of assets, it was closer
to this but still got stuck with the goodwill which really also
should be partially set against prior quarters. Anyway, Wall
Street loves this sort of deal, whatever the price, since it is seen
as a write-off (purchase price) leaving a leaner cleaner company
to make more profit going forward. It doesn’t care about prior
quarters anyway.

By contrast, if bigCo instead spent $1M per quarter for the
previous couple of years, which is much less than the $100M it
acquired startupCo for, then Wall Street would have penalized it
by lowering its stock price due to the lower profitability. Since
the investment doesn’t show on the balance sheet it is a pure loss
with no visible increase in anything good. Of course it is hard for
anyone, especially financial types on Wall Street, to know if the
investment is going to turn out to be Design Compiler (good) or
Synergy (not good), if it is Silicon Ensemble (good) or Route66
(not good). But the same could be said about any other
investment: is that expensive factory for iPods (good) or Segways
(bad).

When a company goes public, it sells some shares for cash, so
ends up with lots of cash in the bank. But it then finds that it is
hard to spend that cash except on acquisitions. If it invests it in
R&D, then the net income will be lower than before and so the
share price will decline from the IPO price due to the reduced
profitability. If it uses it to acquire companies, then prior to the
acquisition its profit is high (no investment) so its stock price is
high. After the acquisition its profit is high (new product to sell

230

with largely sunk costs). At the acquisition, Wall Street doesn’t
care because it is a one-time event and Wall Street never cares
about one-time events. Even if, like emergency spending in
Congress, they happen every year.

I think it is bad when accounting rules in effect force a company
to make tradeoffs that are obviously wrong. It is obviously better
to develop a tool for $10M than buy a company that builds the
same tool for $100M. Yet Wall Street prefers it, so that’s what
happens. Of course there is a difference between developing a
product that might succeed and buying a company that is already
succeeding, and I’ve talked elsewhere about the issues of getting
products into the channel. So the acquisition might make sense
anyway. But accounting skews those decisions too much.

Royalties
Venture capitalists love royalties. They love royalties because
they think that they might get an unexpected upside since they
are hoping that a customer, in effect, signs up for a royalty and
sells far more of their product than they expected and thus has to
pay much more royalty than expected. Since a normal successful
EDA business is predictable (license fees, boring) it doesn’t have
a lot of unlimited upside.

My experience is that you need to be careful how to structure
royalty deals to have any hope of that happening. At VLSI I
remember we once had a deal to build a chip for one of the
Japanese game companies if we could do it really fast (we were
good at that sort of thing). It needed lots of IP so we just signed
everyone’s deal with no license fees for as long as possible, but
which all had ridiculous royalty rates. We probably had a total of
about 25% royalty on the part, more than our margin. But we
reasoned as follows: “One in three, the project gets canceled and
never goes into production (it did); one in three it goes into
production, but we never ship enough volume to reach the point
we pay more in royalties than we would in license fees; one in
three it is a big success and we tell everyone the royalty they are
going to get, and if they don’t accept, we design them out.”

 231

IP is more mature now, so the royalty rates and contracts are
more realistic. Back then the lawyers could consume the whole
design cycle negotiating terms and there wasn’t enough time to
wait. Everyone thought their non-differentiated IP was worth a
big royalty of a few percent, even though a big SoC (even then)
might have dozens of IP blocks that size. So perhaps the problem
has gone away. If you were on a short time to market, you simply
didn’t have time to negotiate terms or royalty rates. You had to
get going. Hence our strategy of accepting everything on the
basis we’d renegotiate if it became important.

The best form of royalty is one that is paid out elsewhere in the
value chain. If TSMC pays a royalty to Artisan (now ARM) or
Blaze (now Tela) then the customer ends up paying since TSMC
adds it to their bill. But if the chip is a success then the customer
doesn’t get to re-negotiate from a position of strength. If the
overall deal is a huge success then TSMC has probably
negotiated percentage breaks anyway (I don’t know any details
so I’m guessing) and can choose either to reduce the cost it
charges on or take a bigger profit.

However, when Artisan was bought by ARM for $900M every
VC wanted a deal like that. And they saw royalties as the secret
sauce. But royalties only work really well when they are much
higher with unexpected success, otherwise they are just moving
payments around in time. Plus they only work well with
unexpected success if they can’t be renegotiated as a result.

The reality is that they are often disappointing. Mike Muller,
CTO of ARM once told me that “royalties are always later and
less than you expect.” It took Artisan 15 years to get to the stage
it was sold to ARM, those royalties were largely licenses fees
foregone in the early years. ARM was, in effect, paying for
money pushed into the future that it would then collect.

At one level, many people say that it is a pity that EDA doesn’t
get a percentage of semiconductor revenue. But in a way, they
do. EDA has been around 1.5-2% of semiconductor revenue for
years. Of course EDA would like that number to be 4% but it’s
unlikely that semiconductor companies would have signed up for
the deal of no upfront money and big royalties, even though they
would probably have been served well by it. They would have

232

avoided any of the business impact that many companies suffer
due to having inadequate numbers of licenses.

SaaS for EDA
SaaS, or software as a service, is the capability to deliver
software over the net. In web 1.0 years this was called the ASP
model, for application service provider. The archetypal company
doing this is Salesforce.com, which provides customer
relationship management (CRM) software for businesses,
initially small and medium sized. This was in comparison with
companies like Siebel (now part of Oracle) who used the
traditional installed software model, basically the same model as
almost all EDA companies use.

So will SaaS take over EDA? The advertised advantages of SaaS
are a lower cost of sales, faster update cycle for the software, and
that it can be incrementally adopted one seat at a time. And
several EDA companies, some small, one called Cadence, have
announced SaaS offerings already.

I think the attraction of SaaS for users comes from a
misunderstanding: that with SaaS, which is one kind of “metered
use” of tools, the tool bill would go down. This seems unlikely.
One problem with all kinds of metered use for EDA is that the
large users have licenses that run 24 hours per day, and small
users just use tools occasionally (for example, during tapeout). If
the tool/hour is priced so that the heavy users pay a little less than
before, then occasional users pay almost nothing. If the tool/hour
is priced so that the occasional users pay a little less than before,
then the heavy users prices go up by multiples of the current cost.
There is no good in-between price either. SaaS doesn’t get
around this issue. And if many people don’t pay less than before
they are not going to adopt metered use, SaaS or otherwise.

I think that the dynamics of the business process are very
different for EDA. One assumption in SaaS is that by lowering
the barrier to entry to a single seat bought over the net, as
opposed to a corporate deal, the market can be expanded to
people who corporate deals don’t reach, or at the very least it will
steal significant market share from the big guys. This was

 233

salesforce.com’s base, initially selling to people who would not
have bought a CRM system, and then stealing users from the big
guys. It is classic Innovator's Dilemma disruption, starting not by
stealing business from the established market leaders, but going
where the competition is "non-use."

But most EDA is not like that. There is no crowd of unsatisfied
IC designers just waiting to build chips if only place & route
were cheaper. And as to undercutting the big guys, any
innovative business model that turns EDA into a smaller market
is likely to reduce investment in EDA, which gets problematic
very quickly. Stealing a market segment Craigslist style, by
turning a billion dollar market into a million dollar market and
dominating it, will not be able to sustain the R&D needed. The
reality is that you can’t compete much on price in EDA: there is
no market to expand into, and if you succeed in stealing a lot of
market at a low price then you had better genuinely have lower
costs (especially in R&D) to be able to do it again for the next
process node. It is a similar problem to the one in
pharmaceuticals. Drugs cost a lot less to make than they sell for,
but if you artificially (by fiat or excessive discounting) reduce the
prices too much then current drugs are cheap but no new ones
will be forthcoming. Unlike with drugs not developed, if there are
no workable tools for the next process node then we will all know
what we are missing; it is not just a profit opportunity foregone, it
is a disaster.

The next problem with EDA is that you can’t get the job done
with tools from only one vendor. So if you use SaaS to deliver all
your EDA tools, you will repeatedly need to move the design
from one vendor to another. But these files are gigabytes in size
and not so easily moved. So it seems to me that if SaaS is going
to work, it has to be through some sort of intermediary who has
all (or most) tools available, not just the tools from a single
vendor. If you use a Cadence flow but you use PrimeTime
(Synopsys) for timing signoff and Calibre (Mentor) for physical
verification then this doesn’t seem workable unless all are
available without copying the entire design around.

Another problem is that SaaS doesn’t work well for highly
interactive software. Neither Photoshop nor layout editors seem

234

like they are good candidates for SaaS since the latency kills the
user experience versus a traditional local application. Yes, I know
Adobe has a version of Photoshop available through SaaS, but go
to any graphics house and see if anyone uses it.

There are some genuine advantages in SaaS. One is that software
update is more painless since it is handled at the server end. You
don’t normally notice when Google tweaks its search algorithm.
But designers are rightly very wary of updating software during
designs: better the bugs you know than some new ones. So again,
EDA seems to be a bit different, at least has been historically.

The early part of the design process and FPGA design are a better
place for SaaS perhaps. The files are smaller even if they need to
be moved, the market is more elastic (not everyone is already
using the best productivity tools). But this part of the market
already suffers from difficulty in extracting value from the
market and SaaS risks reducing the price without a corresponding
true reduction in cost. Walmart is not the low price supplier
because it has everyday low prices; it has everyday low prices
because it has got its costs lower than anyone else’s. Perhaps the
ideal market is FPGA design where the main tool suppliers are
not really trying to make money on the tools directly, and where
few of the designs are enormous.

So if SaaS is going to succeed in EDA, my guess it that it will
either be a virtual CAD organization offering tools from many
vendors, or else in the FPGA world where single-vendor flows
are common.

Why are VCs so greedy?
Why are venture capitalists so greedy? Why do they want a 20-
30X return on their money? Why doesn’t investing $5M and
selling the company for $15M a couple of years later make them
happy? After all, when I’ve bought a stock and sold it for three
times what I paid, I’m pretty pleased with myself.

To understand the reasons, you need to know a little about how
venture capital funds work. There are two lots of people
involved, the general partners, who are the people who work for

 235

the venture capital company; and then there are limited partners
(LPs), the people (insurance companies, pension funds, whatever)
that put up the money to be invested. The general partners may
pay themselves 2% of the value of the fund per year a
management fee, plus 20% of any profits.

One critical factor is that the fund has a lifetime, maybe 10 years.
A fund would like return at least 20% per year. After all, the
stock market has returned nearly 10% since 1900, including a
great depression and the current downturn, and with a lot less
risk. VCs should do at least twice as well as that.

The money isn’t actually all put into the fund by the LPs on day
one, and taken out on the tenth anniversary. As the VCs find
companies to invest in, they make capital calls on the LPs to get
the money. If and when there are successful “exits”, meaning that
portfolio companies are sold or go public, then money is returned
to the LPs. To keep the math simple, though, let’s calculate
returns as if all the money were invested early, and all the
payouts arrive late.

There is one thing about VC investments that is different from
you making an investment in the stock market but that is not
often explicitly talked about: the venture fund (normally) only
gets to invest the money once. This is a big difference from other
types of investors, and is one of the reasons that you are happy if
your stock triples in a couple of years and you sell it, and a VC is
not. You can do something else with the money for the next 8
years and make more money. The VC typically cannot, it is
returned to the LPs.

So let’s do a bit of math. Let’s say there is a $100M fund with a
lifetime of 10 years. To keep things really simple, let’s ignore the
management fees and the carry, the percentage of profits that the
VCs retain to buy their Ferraris. A return of 20% per year means
that the $100M fund needs to return about $600M in total (that’s
simply 20% per year compounded for 10 years).

But not all investments will turn out to be wise. VCs, by
definition, are investing in risky companies and at most 15-20%
will make money, and often fewer (“fund 20, pray for 2”). So the

236

$20M that turns out to be invested in great companies needs to
generate $600M, meaning a 30X multiple.

That’s why VCs are so greedy. They have to get a 30X return on
the good investments to make their numbers. Getting a 3X return
in 2 years doesn’t do much to help them, even though it might be
great for the founders, early investors and employees. If they
have a company that is doing well enough to get an acquisition
offer yielding a 3X return in 2 years, they will prefer to keep on
being independent, and hope the company continues to do well
and can generate a 30X return (or more) during the remanining
lifetime of the fund. They are all like Barry Bonds was: home-run
or strikeout. Getting on first base is just not that interesting.

Term sheets
What is a term sheet? If you raise money from a venture capitalist
(or an experienced angel) then the most important conditions for
the investment will be summarized in a term-sheet. It sounds like
this should be a simple document of a single sheet of paper, but
in fact these days it is dozens of pages of legalese that is a good
way towards the final legal documents. In fact, it is so complex
that typically the really really important stuff will indeed be
summarized in a few bullet points ln a different piece of paper (or
an email).

The most important bullet point, of course, is the pre-money
valuation. This is the amount that the investor values your
company before putting in the money. The post-money valuation
consists of this amount plus the money that they invest.

One item to make sure you understand is the employee option
pool. There will be a pool of options created for future
employees. The normal way is to carve this out from the previous
round before the new round money goes in. This means you pay
for the option pool, not the new investors. At one level this
sounds unfair, but in fact it just feeds into the valuation. The pre-
money valuation is thus usually the valuation of the previous
round’s stock, plus the value of option pool. So the previous
round’s stock is not worth as much as it sounds. Of course this
can be done other ways, but that will affect the valuation

 237

differently. Make sure you understand it since not all “$8
million” pre-money valuations are created equal.

The next most important item is probably whatever is agreed
about liquidation preferences. The VC will have preferred stock,
and preferred means that it gets a better deal than common stock
in the event of an acquisition (or wind-up) of the company. Just
how much better a deal is important. At the very least, usually a
VC wants to get their money back before the common stock gets
any. But it can be a multiple of their money they get back, or
their money plus a dividend (interest). And then they get their
share of the common, which there are a number of ways to do.

Another really important area, especially when there are multiple
rounds, is who has to approve change-of-control decisions
(essentially acquisitions). Can the VCs over-ride the common
stock? Can series B veto series A? In one acquisition I was
involved with, each round of preferred stock voting had to
approve the acquisition, not just the preferred stockholders voting
together as a group, which is not unusual. Sounds innocuous? But
one round of investment was a corporate investor (a customer)
who thus had veto rights over the acquisition (that they leveraged
into a very good deal for themselves since they were also a
customer of the eventual acquirer).

An excellent book on term sheets is Term Sheets and Valuations
which goes through the most important items on the term sheet
and gives you guidance for each item as to what is middle-of-the-
road, what is aggressively in favor of the venture capitalist, and
what is aggressively in favor of the company (or common
stockholders). I’ve purchased this book several times since my
copy always goes missing when someone forgets to give it back.
If you are going to raise money and have not done it dozens of
times before then you should read this book.

Another really good resource is that Wilson-Sonsini, the biggest
name in legal for most silicon valley stuff, has put a term sheet
generator online. You fill in various pages with the data, and it
spits out the legal document. If you are really raising money, you
should at minimum have your lawyer go over the document, it’s
still just a document generator on the web. But if you are thinking
about raising money, or want to know more about term-sheets,

238

then you can play with the tool. Even going through the
experience of filling out the forms will force you to understand a
whole lot of issues that you might not have come across.

There’s also lots of stuff on various venture capitalist blogs. This
will often give you an insight into why a VC might care about a
particular issue, when it would be important, how big a
concession it would be for them to give you more favorable terms
and so on.

As always, remember that the VCs have usually done this lots of
times before. You, not so much. Get good advice.

The antiportfolio
You have to be pretty brave to be a venture capitalist and keep an
“anti-portfolio” page on your website. This lists the deals that
you were offered but turned down. Bessemer Ventures is the only
VC I know that does this. They’ve had some great exits over the
years (such as Skype, Hotjobs, Parametric Technology or going
back, Ungermann-Bass). But they also turned down FedEx (7
times), Intel and Paypal. And here’s their description of another
one that got away:

Cowan’s college friend rented her garage to Sergey and Larry for
their first year. In 1999 and 2000 she tried to introduce Cowan to
“these two really smart Stanford students writing a search
engine”. Students? A new search engine? In the most important
moment ever for Bessemer’s anti-portfolio, Cowan asked her,
“How can I get out of this house without going anywhere near
your garage?”

Most of us who’ve been in Silicon Valley for a long time also
have our own sort of anti-portfolio: the companies that we could
have worked for and didn’t. I’ve never interviewed and then
turned down a job that turned out to be a really huge mistake, but
I have been invited to come and interview and refused.

When SDA (the fore-runner of Cadence) was founded, a friend of
mine, Graham Wood, actually someone I shared an office with
doing my PhD at Edinburgh, relocated to California from Bell

 239

Labs to join them. He was about employee number 20 and went
on to be the creator of SKILL, still significant today in the battle
over Cadence’s Virtuoso franchise. He asked me to come and
interview. But at the time I was happy at VLSI Technology and
thought we were going to change the world. In a way, of course,
we did. But I wasn't smart enough to see that the real money in
ASIC was not in building the chips but in building the software to
build the chips. Plus, if you are going to write EDA software, you
are may as well do it at an EDA company where you are regarded
as valuable, rather than at a semiconductor company where you
are regarded as a weird item on the expense line.

Wes Patterson ran VLSI’s design centers and he left to be CEO
of Xilinx. Somebody, not Wes himself, invited me over to
interview but I was too blind to see that they would become a big
success. “RAM-programmable gate-arrays? Who’d use one of
those? How big a market is that?” Again I failed to realize that
the cost structure might not have been great at first, but it was
only going to get better. If you only want a handful of parts then
FPGAs are the only sensible solution. For high volume, ASIC is
the way to go. But over time, the cutover point creeps up and up
and FPGAs serve more and more of the market.

Many years later I was headhunted by Xilinx to come and
interview to run their entire software business and make it
profitable. I wasn’t sure how feasible this was. Based on my
experience at VLSI you can’t run a real software P&L inside a
semiconductor company since you are an enabler for silicon and,
if a customer is important, the company will just give everything
for free, but not compensate your P&L with some of the silicon
profits you enable. I interviewed with Wim Reolandts, the CEO
who’d recently joined from HP. They asked me to come back in
but that same week I was asked to become CEO of Compass.
Who knows which would have been the better opportunity?
Being a CEO is really hard unless you have the one qualification
that everyone wants: you’ve been a CEO before. So it is always a
good idea to take it when fate offers you that opportunity.

After Ambit was acquired by Cadence, Al Stein, VLSI’s CEO,
tried to interest me in running a venture capital portfolio for
VLSI. It was all the rage then for companies to take some of their

240

cash and try and use their specialized inside knowledge to pick
some winners for investment. I went and talked to the guy who
ran the equivalent fund for Adobe, who’d started the trend. He’d
invested in Netscape and other early internet successes and been
wildly successful. But in the end I stayed at Cadence since I
wasn’t convinced I’d be that good a venture capitalist. In
retrospect I should probably have taken the job. I’m sure it would
have been really interesting irrespective of how successful I
turned out to be, and jobs are really interesting when you are
learning a lot. In fact, if I'd taken it, it would have been fairly
short lived since soon after Philips Semiconductors (now NXP)
bought VLSI.

One job I did interview for and eventually turn down wisely, was
to help run the software arm of European Silicon Structures. This
was a company set up in Europe (duh!) to use e-beam technology
to do very small runs of wafers cost-effectively. I turned the job
down when the CEO couldn’t convince me of a good reason to
have a large well-funded software division since clearly the
company stood or fell based on how good the e-beam technology
turned out to be. By then I’d got smart enough to know that you
don’t want to be in an “expense” department in a semiconductor
company. It turned out the e-beam technology didn’t work that
well and the company failed. I think Cadence picked over the
bones of the software division.

I was never offered a single digit badge number job at Google or
anything like that. But it is always hard to tell which jobs are
going to be with companies that turn out to be wildly successful.
I asked a friend of mine who worked for me briefly as my finance
guy before going on to be the CFO of Ebay and lead the most
successful IPO of all time what was the most important criterion
for success: “Luck.”

CEO pay
If you are an investor, what do you think the best predictors for
success for a startup are? If you could pick only one metric,
which one would you use?

 241

Peter Thiel, who invested in both PayPal and Facebook so seems
to know what he is doing, reckons it is to examine how much the
CEO is paying him or herself.

Thiel says that “the lower the CEO salary, the more likely it is to
succeed.”

A low CEO salary has two effects, both of them important. It
means that the CEO is focused on making the equity of the
company valuable, rather than attempting to make the company
last as long a possible to collect a paycheck.

The second effect is that the CEO’s salary is pretty much a
ceiling on the salaries of all the other employees and it means that
they are similarly aligned.

The effect of those two things together means that the cash burn-
rate of the company is lower, perhaps much lower, and as a result
either extra engineers can be hired or the runway to develop and
get the product to market is longer.

When Thiel was asked what was the average salary for CEOs
from funded startups he came up with the number $100-125K.
For an EDA startup, this seems pretty low since it is much lower
than good individual contributor engineers. I have seen a report
that an EDA or semiconductor startup CEO should be paid
around $180K (plus some bonus plan too). On the other hand,
maybe Peter Thiel is right. How many EDA and semiconductor
startups have been that successful recently?

A good rule of thumb in a startup is that the more junior you are
then the closer to normal market salary you should get. There are
two reasons for this: you can’t afford it and you don’t get enough
equity to make up for it. If you are on a $100K/year salary at
market, you probably can’t afford to work for $50K/year. If you
are an executive at a big EDA company making $400K/year you
can afford to work for under $200K/year. If the company makes
it, the vice-presidents in the company will have 1-2% equity,
which is significant. The more junior people typically not so
much (at least partially because they are that much more
numerous) unless the company managed to bootstrap without any
significant investment.

242

Thiel has a company, younoodle, that (among other things)
attempts to predict a value a startup might achieve 3 years from
founding. It is optimized for internet companies that have not yet
received funding, so may not work very well for semiconductor
or EDA startups. And guess one of the factors that it takes into
account when assessing how successful the company will be:
CEO pay.

 243

Chapter 6: Books

Innovator’s dilemma
The Innovator's Dilemma is a book by Harvard business school
professor Clayton Christensen. I highly recommend the book
both as one of the most stimulating and best-written business
books (I know that is an oxymoron, but this is a book you will
really enjoy reading). The basic thesis is that there are two kinds
of innovation, sustaining (giving high-end customers what they
want) and disruptive (giving a new set of less demanding
customers something less that state-of-the-art). Sustaining
innovation eventually gives people more than they want at a
premium price point, but disruptive innovation often improves
faster and eventually steals the main market from below when its
basic capability addresses the mainstream at a lower price.

Here’s an example: Digital Equipment Corporation (DEC) built
Vax computers in the 80s. Customers wanted more and more
powerful Vaxen and had no use for the IBM PC when it came
out, a low-powered machine that didn’t even have a floppy disk
as standard, let alone a hard disk, when it came out. But
eventually the PC destroyed DEC’s business (and it will almost
certainly destroy Sun’s) as it got more powerful. The dilemma is
that it is unclear what a company like DEC (or Sun today) should
have done. They were not stupid, they could see the PC coming,
and they even made several attempts to enter the PC market
themselves. But it was of no use initially to their primary
customers and they didn’t really have the capability to sell to the
people who could make use of early PCs. By the time the PC was
powerful enough to be of interest to the scientific and business
computing segments, where DEC sold most of its kit, it was too
late. Other companies (Compaq, Dell etc) were already
established as the leaders and DEC was eventually dismembered
with part going to Intel and part going to Compaq and so ending
up inside HP. It is not that it was or is impossible to built a
computer more powerful than a high-end PC, it is that the cost-

244

differential is so large that very few applications justify paying
such an enormous premium.

Clayton’s book has some other lovely examples: cable driven
earth-moving equipment being driven out by hydraulic; steel
mini-mills making rebar and gradually working up to high-grade
sheet steel and so on.

When I was at Cadence we had an annual engineering
conference, a mixture of presentations of papers that could not be
presented externally due to confidentiality, social getting together
of engineers from dispersed sites and an opportunity to address a
lot of engineering in one place (I think about a third of all
Cadence engineers attended). Professor Christensen was one of
the keynote speakers at one meeting and he was also a fascinating
speaker.

One thing he discussed a bit was the end of Moore’s law. He
predicted that Moore’s law would end because it would deliver
more capability than the mainstream required at a price that was
higher than the mainstream wanted to pay. This was already
happening in the PC marketplace where for some time
microprocessors have been “fast enough” for almost all
applications (whereas through most of the 1980s and early 1990s
people would upgrade their PC regularly simply because the old
ones lacked oomp).

I think it is clear now that the mainstream PC market in its own
turn is going to be disrupted from below by iPhone like devices.
iPhones will get more powerful until most of what a PC is used
for can be done on an iPhone (or a Google Android-based phone
or a Nokia one; I’m just using iPhone as shorthand). Of course
they don’t have big screens or keyboards but if my office and
home had them, then my powerful future iPhone would simply
work from my pocket when I was nearby. Or maybe it will
project onto my retina or sense the muscles in my fingers or
something. Who knows?

For many systems, FPGAs are disrupting ASIC from below in
traditional innovator’s dilemma style. Nobody does an ASIC
unless they absolutely have to, which either means an enormous
amount of integration, enormous volumes, or low-power

 245

requirements (which is the Achille’s heel of FPGAs). If you can
use an FPGA then you will.

Moore’s law has been driven for decades by semiconductor
economics. It was always 30% or more cheaper to use the new
process generation than stick with the old one. But it is not clear
whether 28nm (and 22nm or whatever comes next) will have
such a cost reduction. Maybe 22nm is going to be the mainframe
of semiconductor processing, very expensive and delivering more
capability than the mainstream market can take advantage of. The
mainstream will hold back in older processes and use clever
software to get what they want; after all, most chips these days
are just substrates for running the software of the system.

The book that changed everything
Until 1979, IC design was done by specialists who understood
every aspect of the design from semiconductor fabrication,
transistor characteristics, all the way up to small blocks of a
maybe a thousand gates which was the limit of chip fabrication in
that era. In the late 1970s this “tall thin man” approach started to
break down. Design was getting too complex for people who
understood the process to do it, and the process was getting
sufficiently complex to become the realm of its own specialists.

Everything changed thirty years ago with the publication of Mead
and Conway’s book “Introduction to VLSI systems.” It is out of
print but it was the most influential book in semiconductor design
and design automation ever.

Mead and Conway separated design from manufacturing by
creating simplified design rules for layout, and a simplified
timing model suitable for digital design. No longer was it
necessary to understand every nuance of the fabrication process,
no longer was it necessary to consider every transistor as an
analog device. The most important aspect of this is that it meant
that computer scientists could design digital chips since they no
longer needed deep electrical engineering knowledge.

I was at Edinburgh University at the time, finishing up my PhD
(in computer science, not electrical engineering). John Gray, who

246

had run Carver Mead’s silicon structures project at Caltech on
sabbatical from Edinburgh returned carrying galley proofs of the
yet-to-be-published Mead and Conway book. He ran a course
based on this, one of the first on IC design in the UK I presume,
heavily attended not just by the students who were meant to be on
the course but by many of us faculty too.

Design became the province of computer scientists who
understood enough about layout, enough about timing, enough
about architecture and enough about test to successfully create
state-of-the-art chips. Indeed, they could do so more effectively
than the electrical engineers since chips were getting to be too
large to do entirely by hand, and computer scientists already
knew how to deal with complexity. They also started to create the
first EDA tools, simple layout editors, simple simulators,
rudimentary design rule checkers, because their natural instincts
were never to do anything by hand if you could create a program
to automate it.

Mead and Conway’s book created a cohort of IC-literate
computer scientists who went on to populate the CAD groups of
the semiconductor companies and, eventually, the EDA industry
once it got going.

To see how big a difference it made, look at analog design versus
digital design today. Analog design is largely done today the way
digital design was done until Mead and Conway: deeply expert
designers with the raw process models, raw design rules and
polygons.

The next big change would be the invention of Verilog and RTL
synthesis that meant that computer scientists could design
complex chips with almost no knowledge of how chips worked,
what a transistor was, how a chip was made. This new layer
meant that front end designers and back end designers were
different people with different skill-sets.

We seem to be on the cusp of another such layer with ESL tools
starting to become much more widely used, allowing designers
with very little hardware knowledge at all to create complex
systems. The layer above that is software, already well-
understood and with its own culture and tools.

 247

Relevance lost
If you are at all interested in accounting I recommend the book
Relevance Lost by Thomas Johnson and Robert Kaplan. I think it
is a fascinating background to how we ended up with the kind of
finance departments we have, but I admit it might be a minority
interest. I had a girlfriend once who was in finance and I couldn’t
even interest her in reading my copy.

Although published in 1991 it is still in print. It covers how
accounting used to be useful to managers, starting with New
England mill owners in the 19th century. However, as the
accounting rules and processes were hijacked by financial
accounting they have become steadily more and more useless for
managing the business. Nobody wants to keep multiple sets of
books so managers try and manage using accounts put together
for financial accounting reasons on a timescale driven by
financial accounting deadlines.

The situation is even more disconnected in the case of a software
or design company. Much of the real value of the company is
bound up in partially or completed software products (or
designs). The rules for capitalizing development are so strict that
it must only be done when the product is pretty much released.
Almost all the development is written off as an expense as if it
were part of the utility bill, as opposed to an investment building
up value in the company. From a point of view of keeping the tax
paid by the company low this may be desirable; from the point of
view of the balance sheet giving a useful assessment of the
company not so much. Design Compiler is clearly a major asset
of Synopsys but you won’t find it on the balance sheet anywhere,
either as an estimate of its value as a forward looking business or
even as a rollup of the cost of development over the years.

Other intangible assets, such as an effective high-skilled
development team, appear nowhere. If a key employee leaves the
value of the company may well have changed in a meaningful
way but this is nowhere reflected. It is completely unclear how
one would actually account for this in any sensible way, of
course, but it sort of happens anyway. Look at the change in
market cap of Apple when Steve Jobs is thought to be sick or not,

248

which is actually the value of the asset of having Jobs as CEO
that in principle should be on the balance sheet somewhere.

Software companies seem to have very lax financial controls in
my experience. I worked for over ten years at VLSI Technology,
a semiconductor company. That is a business in which a lot of
money flows around but the margins are thin. Fabs cost (today)
billions of dollars so getting the accounting right is important.
The financial controls and forecasting in a semiconductor
company are generally very good. When we spun Compass out
we were still consolidated into VLSI’s books and we kept the
finance we were used to. Every manager did an expense forecast
for 6 months ahead, and monthly we looked at variances to that
and were expected to explain them. Startups are small enough
that their financial controls, at least for cash, are usually pretty
good. But when I got to Cadence I was surprised that even as the
manager of the custom IC business unit (then a $250M/year
business) I wasn’t expected to forecast my expenses, it was hard
to even find out what they were, and as a result they were pretty
much whatever they turned out to be. The concept of over-
spending didn’t exist. I assume that has changed somewhat now
that the financial outlook is less rosy, but that sort of thing is part
of the DNA of a company and is actually quite hard to change.

Crossing the chasm

The most influential book on hi-tech marketing of the last twenty
years or so has to be Geoffrey Moore’s Crossing the Chasm. I
doubt that there is anyone in marketing reading this blog who has
not read it. In fact everyone in hi-tech should read it since it
affects not just how products are marketed, but how they are
developed, where investment needs to be made and how, and
generally what is required for a hi-tech product such as an EDA
tool, software product, semiconductor chip or a system. If you are
in engineering wondering why your product marketing manager
is insisting that you stop work on the new whizzy feature for the
next version in order to make sure that the current version reads

 249

some obsolete format of library then this book makes it clear
why.

The key insight of the book is that the mainstream buys for
different reasons than early adopters. As a result, it is much
harder than you would expect to turn success with early adopters
into success with the mainstream. Getting from this early success
to the nirvana of mainstream adoption is crossing the chasm, the
chasm being the fact that you can burn all of your money trying
to get across unsuccessfully if you ignore what is necessary for
success.

The big idea in Crossing the Chasm actually comes from an
earlier book by Bill Davidow published way back in 1986
Marketing High-technology (still in print), which first introduced
the idea of the “whole product.” However, Geoffrey Moore did a
much better job of explaining it and the chasm metaphor was a
much more viral image.

Early adopters will do their own work to make up for deficiencies
in your product, especially tailoring it to work in their
environments, adding missing scripts or libraries and generally
working out how to get the most value out of your product.
Mainstream customers will not do that. You need to deliver them
everything that you need, the whole product. You may not need
to deliver all this yourself, but you need to create an ecosystem so
that everything is available.

A good example is the early days of Synopsys. You can sell a
synthesis product like Design Compiler (DC) to a few early
adopters on the basis that they will do their own work to take
existing simulation cell libraries and manually create the .lib
libraries necessary for synthesis. However, the mainstream will
not. The mainstream wants the whole product, one that they can
use from day one. This means not just DC but also .lib libraries
for whichever library they happen to want to use for fabrication.
So in the early days Synopsys had a huge group of engineers
creating these libraries for the ASIC vendors. I think Bob
Dahlberg, who ran the group, told me that it peaked at 200
people. Within a year the ASIC vendors realized that they needed
to do this job themselves since they didn’t want Synopsys’s

250

library group to be on their critical path to revenue from a new
process node.

This shows another point, that once you start to achieve success
in the mainstream, you become part of someone else’s whole
product and they need to support you to be successful
themselves.

The whole product becomes a barrier to entry too. Once
Synopsys had all the ASIC vendors on-board, they were not
likely to want to create libraries for other synthesis tools. So
Mentor’s Autologic, Compass’s ASIC Synthesizer, Trimeter,
SILC and all the other struggled not just because Synopsys could
invest more in developing synthesis but also because nobody else
could get the whole product together easily.

Chris Wilson, the CTO of NuSym, gets all this but isn’t sure what
to do about it. He complains that there is now so much
infrastructure required in a simulator (3 versions of the API,
several testbench languages, Verilog, VHDL, SystemVerilog, C)
that it takes all their effort just to do that and very little is used to
deliver the core differentiated technology. Of course it would be
convenient for him if someone else provided all that so that they
can focus on their core technology, but nobody does. Synopsys
didn’t want to develop ASIC libraries either. But he knows he
won’t be successful without full compatibility.

Coincidentally, both Bill Davidow and Geoffrey Moore both
ended up in the same venture capital firm, Mohr-Davidow
Ventures (MDV). When we finally got MDV over the finishing
line to invest in VaST while I was there, we ended up being
invited to a half-day meeting with Geoffrey Moore. This lead to a
dysfunctional conversation since I knew that the Mohr in the
name of the company was spelled differently so I figured that
somebody was confused about who we were meeting. But I was
wrong: Geoffrey Moore was (and is) a partner of MDV. At that
point VaST was having some early success in a handful of
companies, mostly in Japan, and so we spent a very interesting
afternoon brainstorming how we could create an ecosystem of
models which we all knew was the main barrier to getting across
the chasm.

 251

Mr Rodgers goes to Washington
T.J. Rodgers, the CEO of Cypress Semiconductor, is also a critic
of government intervention in the economy, especially that of
Silicon Valley. Whatever you think of the strategic decisions that
he made at Cypress, most of which look pretty good in hindsight,
he is a great writer. I wish I could write as clearly and
interestingly as he does.

If you haven’t read it then I highly recommend reading every
word of his 1993 testimony to Congress in the Clinton era, “Free
Market or Government Subsidies?” It is especially worth reading
in the light of the current extensive intervention in the economy
by the government in all sorts of arbitrary ways. Luckily they
aren’t intervening much yet in technology. Of course, on one
level, it would be nice to get some stimulus money, but without
the interference that comes with it.

One area that technology that does have a large government
dimension, at the very least in competing for the same VC
money, is the environment. I regard most of the current venture-
capital investments in “green” technologies largely as bets on
governments subsidizing them whether they are economic or not.
For instance, did you know that Germany, that famously sunny
country with its enormous deserts, is the biggest installer of
photovoltaic solar power, accounting for almost half the world
market? And with the senate dominated by states that have few
people but lots of agriculture, there are no prizes for which
country has the most subsidies for turning expensive food into
ethanol, a nasty fuel that corrodes pipes, attracts water and
produces lots of aldehyde pollution at the tailpipe. Not to mention
uses roughly as much energy to produce as it generates when
used.

T.J. Rodgers's plea to Congress in 1993 for a balanced budget
(given that the budget was eventually in surplus on Clinton’s
watch) looks absurd today, given the way we are racking up an
unpayable tab. But his testimony from 15 years ago stands up
really well today.

252

Even more recommended is T.J. Rodgers’s piece for the Cato
Institute, “Why Silicon Valley Should Not Normalize Relations
with Washington,” that does a great job of contrasting what he,
T.J. Rodgers, worries about on a daily basis, with what Dwayne
Andreas, then-CEO of Archer Daniels Midland worries about.
T.J. Rodgers worries about semiconductor technology, borrowing
money, how much to invest in solar, which products to design.
Andreas worries about…well, making sure that Congress passes
the right laws to ensure that he can farm the subsidies. ADM is
the largest beneficiary, even before the last changes of the law, of
the policy of insisting that a certain amount of ethanol gets added
to gasoline.

Early exits
I came across the book Early Exits recently. It is definitely worth
a read, especially for anyone having anything to do with EDA
startups. An early exit is one after a relatively small number of
years at a relatively small multiple to the original investment. As
VCs don’t like this sort of deal in general. They need big returns
on at least a few of their investments and they don’t care that
much about the rest. Early exits don’t interest them.

There are a number of reasons that EDA startups are not getting
funded by venture capitalists any more. The most obvious is that
large EDA companies have stopped buying them at high
valuations. This is for a mixture of reasons but one is that
standalone tools are harder to ramp up profitably without tightly
integrating them into the main body of pre-existing tools. For
example, standalone statistical static timing is interesting, but
much more important is integrating statistical static timing into
the synthesis, place and route flow. Don’t just find the errors after
the fact, stop them occurring in the first place.

But a second reason that EDA startups are unattractive is that
they don’t require enough money. Venture funds are growing
larger and it is a fact of life that being on the board of a company
looking after a $3M investment is about the same amount of
work as looking after an investment of $30M. If a fund is large, it
can’t afford to dole it out $3M at a time; that requires too many

 253

investments. Instead, fewer but larger investments are required.
This means that the size of investment is too large for an EDA
company. Too large in two ways: too large since EDA tools don’t
require that much capital to develop, and too large since the exit
price required to make the investment successful is higher than is
likely to happen.

I’ve been somewhat involved with several startups recently who
are looking about how to raise a little money. Relatively small
amounts are needed and venture capitalists are simply not the
place to go looking. Individual investors (angels) and corporate
investors (customers) are much more likely. New technology
continues to be needed and this type of investor can live with the
likely return on a successful company.

The new rules are raise only a tiny amount of money, run the
company on a shoestring, validate the technology with some
initial sales and exit earlier rather than later. If you wait, you will
need more money to build a big channel, and any acquirer will
have to tear it down anyway. EDA startups spend more money
building sales channels than technology, and one thing Cadence
and Synopsys don’t need more of is channel.

One thing that the book points out is something I’d not really
thought about. The sales cycle for an EDA tool is about 9
months. What do you think the sales cycle for an EDA company
is? More, a year or two from first contact to closed deal. If you
are going for an early exit, the sales cycle for the company is
about the same as the time you need to develop the product, so
you need to start selling the company before you found it!

Four steps to the epiphany
There’s a book on how to bring a product to market that is almost
a samizdat document in the marketing world. It’s a privately
published book originally intended to accompany a course at
Berkeley and Stanford. It’s not the most readable of prose so
don’t expect the Innovator’s Dilemma or Crossing the Chasm.
However it is packed with good stuff for any startup, and
especially for EDA startups who embody all the problems that

254

the book addresses. It’s called Four Steps to the Epiphany by
Steve Blank.

The heart of the idea of the book is that you don’t know what the
customer wants. So in addition to developing a product
(preferably the minimum shippable product, since how do you
know the customer even wants that?) you need to develop
customers. You have a product development process. You need a
customer development process. And hiring a VP of sales and a
VP of business development and waiting around for engineering
to ship doesn’t count.

A secondary idea is that the customer development process is
very different if you are creating a brand new market, entering an
existing market or re-segmenting an existing market (producing a
product that only serves part of the market, usually but not
always either creaming off the high-end or disrupting the low-
end).

It is hard to summarize an entire book in one blog post and I
don’t intend to try. You’ll have to invest in the book yourself and
I guarantee that you will find plenty of thoughtful ideas that are
immediately applicable to almost any product launch, whether in
a startup or a large company.

If you only take one idea away from the book it would be this:
get out of the building. Startups don’t fail for lack of technology,
they fail for lack of customers. Heed Steve’s words: “In a startup,
no facts exist inside the building, only opinions.” You have to go
and talk to potential customers and even talking won’t be enough.
You’ll have to ship them early product, burn them when it
doesn’t do what they needed, and correct your course. If you
scale the company before you have the product right, you’ll run
out of money (and in the current climate you’re not getting any
more).

The idea of listening to customers is not to find out everything
that they want and build a laundry list. It is to attempt to narrow
the product down to the minimum shippable product, one that at
least a few customers can get value from even if it doesn’t do
everything they want. Saint-Exupery’s quote that “A designer
knows he has achieved perfection not when there is nothing left

 255

to add, but when there is nothing left to take away,” summarizes
the goal for the earliest stage of customer development. Then
start iterating as your understanding increases.

If you read newspaper articles on startups, you often get the idea
that a couple of guys in a garage really understood something
deep and took down some huge corporation that was too dumb to
notice. The reality is that almost all successful startups end up
doing something different from what they first intended when
they were founded, sometimes dramatically so. Look at Paypal
(originally doing beamed payments from Palm Pilots) or more
recently Twitter (part of a podcasting company). Or even Google
(originally just doing search without a clue about how to
monetize it). In EDA the changes are less dramatic but very few
business plans survive after contact with the market.

Chips and Change
I’ve been reading an interesting book on the semiconductor
industry. It’s called Chips and Change by Clair Brown and Greg
Linden. I got sent a review copy (there are some tiny advantages
to being a blogger) and I’m not sure whether it is truly available.
Amazon shows it as having a publishing date of 9/30 but also
being in-stock with a delay. Anyway, if you have anything to do
with semiconductors I recommend you buy a copy immediately.

 The book looks at semiconductor as an economic issue rather
than from a technological point of view (although this is not
ignored) which fits in with my view of the world. Semiconductor
process transitions are driven by economics (cheaper transistors)
more than technology (better transistors) especially now where
leakage and other considerations make it unclear whether you are
getting better transistors or only more of them.

 The book examines how the semiconductor industry has lurched
between major crises that has driven both its success and its
restructuring over time. It starts back in the 1980s when the US,
having essentially invented the integrated circuit, started to lose
the quality war to Japan. It examines 8 crises in total.

256

 First, losing the memory quality war to Japan that eventually
drove most US memory supplies (Intel, for example, remember
they were a memory supplier) out of the market. Most readers
probably don’t remember when HP announced how much better
the quality of Japanese memories was compared to American,
and how it shook the industry to the core (they had lots of data).

 The second crisis was the rising cost of fabrication. The result of
this in the US (but not elsewhere) was the creation of fabless
semiconductor companies that used TSMC, UMC and Chartered
to manufacture. Also the creation of clubs of companies sharing
the cost of process development.

 The third crisis was the rising cost of design. This meant that low
volume products just were not economically viable. Chips used to
be consumed by big corporations largely insensitive to price to
consumers who were hyper-sensitive to price. This was the fourth
crisis. Somewhere in here the FPGA started to play a role.

 The fifth crisis was the limits to Moore’s law, in particular
limitations in lithography (Moore’s law is more about lithography
than any other aspect of semiconductor manufacture). This has
been an ongoing issue forever, of course, but has started to
become the fundamental limitation on progress.

 their cost, increased out of control there was a rush to find new
talent in India and China. Partially for cost reasons but also
because there were too few designers available without looking
globally.

 But fabs got more and more expensive, and price pressure on
end-products got more intense leading to the current situation
where most companies cannot afford to build a fab nor develop a
leading edge process to run within it. There are just 4 or 5
groupings now that can do this (Intel, Samsung/IBM/ST, TSMC,
Japan, UMC/TI) and there is likely to be further consolidation.
Even with tapping into low cost Asian labor , semiconductors are
not getting the share they feel they should of the electronics value
chain.

 257

 The 8th challenge
is the new level of
global competition.
Japan is clearly, for
example, losing
out as a
“Galapagos
market” with lots
of internal
competition but, as
I’ve said before,
turning their back
on the world, just
like how the Galapagos produced giant tortoises. But also there is
governmental competition with states attempting to join the
industry keeping global competition feverish.

 The book has a great graphic that summarizes the change in the
basis of competition over time. If you read from left to right you
see the problems come up chronologically. The vertical scale
splits them into technological problems, economic problems, and
competitive/globalization issues. This single graphic pulls
together all of the issues facing the semiconductor industry, and
how it got here, in a single simple chart.

As I said earlier, if you are involved in the challenges of the
semiconductor industry, this is a book you should read (and, in
case anyone is suspicious, I’m have no relation with the publisher
other than receiving a free copy).

The Flaw of Averages
I’ve been reading a very interesting book called “The Flaw of
Averages” by Sam Savage. It looks at why using average data
only produces the correct answers in very limited circumstances.
The flaw of averages is that plans based on average assumptions
are, on average, wrong.

For example, assume you are a manager deciding how big a
factory (or fab) to build. Your marketing manager tells you he is

258

certain that you’ll sell between 80,000 and 120,000 per year. But
you insist on a number and get given the average of 100,000 and
you build a factory with a capacity for 100,000. Let’s assume that
the marketing manager nailed the numbers precisely (don’t we
always?). On average how much money will you make? Well, the
number will be somewhere between 80,000 and 120,000. If the
number is less than 100,000 you make less money than you
expected. If the demand is greater than 100,000 you don’t make
more money because your capacity is maxed out. So, on average,
you make less money than you expected even though your
factory has average capacity.

There are other fascinating things. You may have heard of
Simpson’s paradox. One of the most famous examples of this
was a 1986 kidney stone study where treatment A was more
effective than treatment B. But if you looked at only small kidney
stones, then treatment B was better than treatment A. And if you
looked at only large kidney stones, then again treatment B was
better than treatment A. But when the two were combined, A was
better than B. WTF?

Another example: in each of 1995, 1996 and 1997 David Justice
had a higher baseball batting average than Derek Jeter. But taking
the three years together, Derek Jeter had a higher average than
Justice. WTF?

A lot of what you learned in school about statistics (means,
variance, correlation etc) is really not very relevant now that we
can run large numbers of investigations as to what is really going
on in seconds. Means and standard deviations were an attempt to
get at something important before this capability existed, what
Sam Savage calls “steam era” statistics. Now we can use
computation to make sure we don’t fall into traps.

There’s also lots of stuff about options and how to price them
depends on thinking (or computing) this sort of thing properly. If
a stock is $20 today and on average will be $20 in 12 months
time, how much should you pay for an option to buy it for $21 in
a year. If you’d succeeded in answering this a few decades ago
you’d have won the Nobel prize. You may have heard about
Black-Scholes option pricing, which does the math to work this
out. Even though at the average stock price ($20) an option to

 259

purchase at $21 is worth nothing (because you’d simply not
exercise your option) it clearly is worth something since there is
some chance that the stock will end up above $21 and you can
make money exercising your option and selling it at the market
price.

Some of these ideas are important in thinking about business
plans and formalizes some of the sensitivity analysis that it is
always good to do (how much more money do we need to raise if
the first orders come 6 months later than expected? if the product
costs 30% more to develop?).

Consider a drunk walking down the middle of a highway. His
average position is in the center of the road on the yellow line.
But on average where is he. Dead.

And don’t forget, almost everyone has more than the average
number of legs.

260

Chapter 7: Off-topic

What color is a green card?
Most American don’t know the answer,
which is today off-white. Mine is
alongside. Presumably it was green
once.

I’m an immigrant. I was born and
brought up in the UK and came to the
US in 1982 on an H-1 visa. After four years I got a green card
(which was pink in those days) and became a permanent resident.
I can live here indefinitely (provided I don’t commit major
felonies). Actually, the real timeline is that after 2 years I applied
for a green card but it took another couple of years for the
government to process the paperwork. There is no upside in good
immigration processing since immigrants don’t vote. Imagine the
outcry if it took two years to get a passport.

It is one of the strengths of the US that people like me could
easily come here and contribute, along with other more
significant immigrants such as Sergey Brin, Jerry Yang, Albert
Einstein, Bob Hope, John Muir, Carlos Santana and many others.
That doesn’t happen much in China or Mexico. The mayor of
Vienna is not an American immigrant; Arnold Schwarzenegger
came in the other direction.

On a personal note, I’m very grateful for the opportunity that the
US gave me.

Most discussion of immigration centers on illegal immigration of
poorly educated Mexicans, but all the evidence seems to be that
while poor Americans may lose slightly through increased
competition for low-paid jobs, they gain even more from things
like lower cost food. But as a strategic issue for the US I don’t
think this is all that big a deal. The US economy doesn’t stand or
fall on the basis of how many Mexicans work here.

 261

Much more important is the idiotic legal immigration policy we
have for educated people. The most insane part is allowing
students to come here for PhDs (55% of engineering PhDs are
foreign-born) and expelling them when they are done, since there
is no automatic route to stay here. Plus we make it harder than
necessary to come here to study in the first place. First loss, these
are just the kind of people that we need here in the US to drive
technology businesses. Second loss, even if students go back to
their home countries, they go back with a positive image of the
US to counter the negative views of people who know little about
the country.

The H-1 visa quota for each year opens up on 1st of April and
closes immediately since twice as many applications are received
that day as are available for the entire year. But those are for
visas starting October 1st. When I came to the US either there was
no quota or it was much higher than the number of applicants. If
a company wanted to hire a qualified candidate from overseas
(me) then it applied for a visa, waited about 6 weeks and got it,
then the person could start. Today it is impossible to hire
someone on that basis since the delay is about 9 months on
average until the next October 1st after the next April 1st, and then
there is only a 50:50 chance of getting a visa anyway. Companies
can’t be bothered with such a lengthy uncertain process.

The result is that H-1 visas have become a way for overseas
consulting companies, especially Indian, to apply for large
numbers of visas knowing some will get through and their
employees can then come here months later. This is not
necessarily bad but it also squeezes out everyone else, every
talented person that an American company wants to hire from
overseas, every student who wants to stay on once they have their
doctorate and so on. The best solution if it is politically
unacceptable to do the sensible thing and remove the cap, would
be to ‘auction off’ the visas. But I don’t mean by paying bids to
the government but by using the salary that the employee would
receive. The higher the salary paid the easier to get a visa for that
employee. The Indian job shops would be ‘outbid’ by PhDs.

I can do no better than to quote James Fallows, an editor at
Atlantic Monthly who currently lives in China (and used to live

262

in Japan during its heydey in the late 80s). Here he is talking
about an Irishman who lived in southern California but had to
move to China because he couldn’t get a visa to remain here:

“I might as well say this in every article I write from
overseas: The easier America makes it for talented
foreigners to work and study there, the richer, more
powerful, and more respected America will be. America’s
ability to absorb the world’s talent is the crucial
advantage no other culture can match—as long as
America doesn’t forfeit this advantage with visa rules
written mainly out of fear.”

China and India
Let’s look at China and India. They are both enormous, with over
a billion people each. Both are making huge strides towards
modernity having opened up to the outside world in the last
twenty years or so after having very protectionist planned
economies with the usual unimpressive results.

Both China and India have huge disparities in income and
standards of living, with a strong growing middle class but a
large population of subsistence farmers and people living on the
margins in cities. And there are lots of cities, over 100 cities of
over 1 million people in China so most of them you’ve never
heard of. You are much more conscious of the poverty in India
because everything is mixed up there. You can be in, say, the
Cadence buildings in Noida and you could be in California
except that some of the women are in jeans and some are in saris.
But walk outside and there are cattle wandering around, people
drying dung and beggars everywhere. In China, the eastern cities
are prosperous and the marginalized mainly live in the rural west
so if you visit Beijing and Shanghai you won’t see them.

The other interesting major difference is the system of
government. India is a bit like California with a thriving private
sector and dysfunctional public administration. For example,
every company has to have its own generators since the power
companies are micromanaged by the politicians, can’t force
anyone to pay their bills, have controlled prices and so can’t

 263

make any money and thus can’t invest. As the largest democracy
in the world, those rural and illiterate poor are able to force bad
policies in many areas.

By contrast, China has a non-democratic government. But as a
result it is perhaps easier for it to pursue sensible policies that
would not necessarily be popular. So they have managed,
originally in the south far from prying eyes in Beijing (which is
in the north for those of you with no Chinese geography: bei is
the Chinese for north) to have business friendly policies that have
ignited a boom that has lifted more people out of poverty faster
than anything in history. Deng Xiaoping, who is credited with
orchestrating the change in policy, is a hero in that sense, despite
the unacceptable blot of Tiananmen Square. To read a current
viewpoint on various aspects of China, I recommend James
Fallows’s book Postcards From Tomorrow Square.

Because of their populations and a strong cultural emphasis on
education as a means to advancement, both China and India
produce a lot of well-trained people in any area such as
engineering and computer science. India, of course, has the
legendary Indian Institutes of Technology (IITs). Almost every
successful Indian you meet in Silicon Valley is from one of the
IIT (even Asok, the intern in Dilbert). China also graduates a
huge number of engineers, There is some debate about the actual
number and whether many of what Asia calls an engineer are
really what we would call technicians. But it is pretty clear that
both countries are graduating more real engineers than the US.
This is not necessarily bad for the US. It is the dirty secret of
Silicon Valley that so much of the engineering is done by people
born outside of the US. When I ran a 200 person engineering
group in the 1990s I estimated that over half were immigrants,
starting with me. So it is all the more important that, as I said last
week, the US have sensible immigration policies to make it easy
for such people to come here (or stay here when they finish their
advanced degrees).

Of course the current downturn will have a major impact on both
countries. China, in particular, has to keep growing fast enough
to make the country rich before it becomes old due to its inverted
demographic that will be created by the one-child policy. It will

264

be interesting to compare China and India and whether Lee Kuan
Yew’s view that you need to liberate economically before
liberating politically is proven right or wrong. China (and
Singapore, of course) are exhibit A; India is exhibit B.

Visa. Priceless
The current downturn has lead to renewed focus in the H-1B visa
cap, not to mention xenophobic restrictions slipped into the
TARP bills to make the US even less welcoming. I think we have
the worst of all worlds right now. The caps are so low that
companies cannot use H-1 visas to hire talented people from
overseas to work for them, they have become only a way for
Asian subcontractors to get people in the to country and nothing
much else. The entire year’s supply of visas goes in a day so the
old model no longer works. It is no longer possible to find a
talented person overseas, hire him or her, get a visa and set the
start date a few weeks later. That is how I came to the US in the
early 1980s. Now, the only model that works for a person like
that is to hire them onto your overseas subsidiary (so don’t be a
startup or you won’t have one) and after they have worked for a
year it is possible to transfer them on an L-1 visa.

But people always tend to focus on the lowest level people and
debate whether or not a person with an H-1 visa is taking a job
away from an equally qualified American. In the old days the
answer was certainly “no”, but now I’m not so sure. They are for
sure taking a job away from an almost certainly more talented
overseas employee who cannot get hired under the current visa
system and who would be an unquestionable gain to the US as an
immigrant.

However, immigrants create a lot of jobs for Americans too by
their skill at founding or managing companies. In EDA, for
example, Aart de Geus (CEO of Synopys) came from
Switzerland, Lip-Bu Tan (CEO of Cadence) came from
Singapore, Rajeev Madhavan (CEO of Magma) came from India.
As far as I know, Wally Rhines (CEO of Mentor) is American
born and bred. Some other sizeable EDA companies with
immigrant CEOs are Attrenta (Ajoy Bose from India), Apache

 265

(Andrew Yang from China), Sequence (Vik Kulkarni from
India), VaST (Alain Labatt from France), Virtutech (John
Lambert from England).

xxx

I’m guessing that most of the immigrants originally came to this
country either as students (so on an F-1 visa) or on an H-1 visa.
Today we make it much too hard for the next generation of
talented individuals overseas to come here and stay.

I think that over the next few years the problem with the US just
as likely to be immigrants leaving the country, especially to
return to India or Taiwan/China. This is already happening to
some extent. Growth there is more attractive than here, and the
infrastructure in the US for starting a business, thought better, is
no longer so superior to everywhere else.

I think that the US’s capability to absorb talented individuals and
make them successful is a competitive advantage no other
country has. Everyone else must love the way we are
handicapping ourselves these days. We are our own April fool
joke, but not even mildly humorous.

Downturn
Superficially, the present downturn is similar to the “technology”
crash of 2001. I put technology in quotes since very little of that
first internet boom involved true technology, and many people
who called themselves programmers were writing plain HTML.
As somebody, I forget who, said to me at the time: “surely one
day technology will count again.” Of course some companies,
like Amazon, Webvan, eBay or Napster, had a differentiated
technology foundation to go with what was mainly a business
model play but most did not.

But undeniably the boom of investment created a huge number of
jobs. When the crash finally came, large numbers of them were
destroyed. A lot of those people had come to the bay area
attracted by the boom, and when their jobs went away they went
home again. The SoMa warehouses in San Francisco emptied out

266

as fast as they had filled and apartment rents came back down.
Many people who had left the EDA industry to make their
fortune returned to a place where their knowledge was still
valued. As is often the case, the people in EDA (at least the ones
I know) who made it big in the internet companies were people
who left early, before it was obvious that it was a good idea.
People who joined Yahoo before it was public, who formed
eBay’s finance organization or founded small companies that
built important pieces of the plumbing.

This downturn seems different. Many of the people being laid off
(and I don’t just mean in EDA, in silicon valley in general) are
people who have been here for decades, not people who came
here in the last few years as part of the gold rush. Of course,
veterans have been laid off before and then immediately re-hired
when the eventual upturn came.

But again this downturn seems different. I don’t think that many
of these jobs are coming back again. Ever. EDA in particular is
undergoing some sort of restructuring, as is semiconductor. We
can argue about precisely what we will see when the dust settles,
but I don’t think many of us expect to see the 2007 landscape
once again.

I’ve pointed out before that it is obvious that EDA technology is
required since you can’t design chips any other way. But the
EDA industry as it was configured will not be the way that tools
continue to be delivered. It is hard to imagine that Cadence will
employ 5000 people again any time soon, to pick the most
obvious example.

The many dozens of EDA startups that used to employ significant
numbers of people in aggregate aren’t coming back either. Any
startups that do get formed will be extremely lean with just a
handful of people. Partially this is driven by technology: with
modern tools and open infrastructure, it doesn’t take an EDA
startup half a dozen people and a year or two to build (duplicate)
the infrastructure they need on which to create differentiated
technology. It takes a couple of guys a couple of months.
Partially size is driven by investment. With public markets closed
to EDA companies (to everyone right now but to small software
companies probably forever) then the only investments in EDA

 267

that makes sense are ones that still make sense with $25M as a
target acquisition price, not $250M.

A recent report by Accenture (it’s called "How Semiconductor
Companies Can Achieve High Performance by Simplifying Their
Businesses” but you have to pay lots of $ to read it) reveals that
some semiconductor engineers are "disenchanted" in their work,
and "fearful of losing their jobs." That’s the kind of revelation
that really makes you want to reach for your wallet.

Facetiousness aside, the report also points out that as
semiconductor companies go fabless (or at least fab-lite in the
meantime) then the dynamics of what is valuable change. Most
obviously if you are in technology development (i.e.
semiconductor process development), which is no longer
required. And as I’ve pointed out, once you don’t have a fab,
there is often not a lot of justification for the particular
combination of businesses that find themselves in the same
semiconductor company. The weak nuclear force has gone to
zero and all those nuclei are going to fly apart.

Silicon Valley is a unique ecosystem, the center of the unverse
for technology. But it is changing in form in ways that are not yet
clear.

Old standards
About 12 years ago I went on a three-day seminar about the
wireless industry presented by the wonderfully named Herschel
Shosteck (who unfortunately died of cancer last year although the
company that bears his name still runs similar workshops). It was
held at an Oxford college and since there were no phones in the
rooms, they didn’t have a way to give us wake-up calls. So we
were all given alarm clocks. But not a modern electronic digital
one. We were each given an old wind-up brass alarm clock. But
there was a message behind this that Herschel had long espoused:
old standards live a lot longer than you think and you can’t ignore
them and hope that they will go away.

In the case of the wireless industry, he meant that despite the
then-ongoing transition to GSM (and in the US to CDMA and

268

US-TDMA) the old analog standards (AMPS in the US, a whole
hodge-podge of different ones in Europe) would be around for a
long time. People with old phones would expect them to continue
to work and old base stations would continue to be a cheap way
of providing service in some areas. All in all it would take a lot
longer than most people were predicting before handset makers
could drop support for the old standard and before base stations
would not need to keep at least a few channels reserved for the
old standard. Also, in particular, before business models could
fold in the cost saving from dropping the old standard.

My favorite old standard is the automobile “cigarette lighter”
outlet. According to Wikipedia it is actually a cigar lighter
receptacle (hence the size, much larger than a cigarette). The
current design first started appearing in vehicles in 1956.
Originally, they were simply intended to be a safer way for
drivers to light their cigars than using matches. After all
“everyone” smoked back then. Since cars had no other power
outlet, anything that needed power used that socket as a way of
getting it without requiring any special wiring. Who knew that in
an age where few of us smoke, and where we can’t smoke on
planes, that we’d be plugging our computers into outlets on
(some) planes that are designed to match that old design. If you’d
told some engineer at GM in the 1950s that the cigarette lighter
socket would be used by people like him to power computers on
planes, he’d have thought you insane. Computers were million
dollar room-sized things that only a handful of big companies
used, and planes were too expensive for ordinary people. Talking
of planes, why do we always get on from the left-hand side?
Because it is the "port" side that ships would put against the port
for loading, unobstructed by the steering-oar that was on the
right-hand side before the invention of the rudder, hence steer-
board or "starboard". The first commercial planes were sea-
planes, so they naturally followed along. Another old standard
lives on, a thousand years after steering-oars became obsolete.

We see some of the same things in EDA. OK, the 1970s weren't a
thousand years ago, but in dog years it seems like it. For physical
layout, it is still the case that a lot of designs are moved around in
what is basically the Calma system tape backup format, a
standard that dates back to the mid 1970s. Verilog is not going

 269

away any time soon to be replaced with something more
“modern.” Sometimes new standards come along but it is rare for
the old ones to die completely. We can probably drop Tegas
netlist support, I suppose, but I’m sure somebody somewhere has
a legacy design where that is the only representation available.

So new standards come along all the time, but the old standards
simply don’t die. At least not for a lot longer than you would
expect. Rrrrrnnnnggggg.

San Francisco: silicon valley’s
dormitory
San Francisco is a dormitory town for Silicon Valley. Not
completely, of course. But unless you regularly drive between
Mountain View and San Francisco you probably aren’t aware of
the huge fleet of buses that now drives people from San
Francisco to other cities: Google in Mountain View, Yahoo all
over, Genetech in South San Francisco, Ebay in San Jose. I have
a friend who knows Gavin Newsom, the mayor, and keeps trying
to get him to come and stand on a bridge over the freeway one
morning to see just what is happening where lots of people (me
included) largely work in Silicon Valley but live in the city. The
traffic is still more jammed entering the city than leaving but it’s
getting close. Bauer, who used to just run limos I think, now has
a huge fleet of buses with on-board WiFi that they contract out to
bring employees down to the valley from San Francisco. They
cram the car-pool lane between all those Priuses making the not-
so-green 40 mile trip.

San Francisco seems to have a very anti-business culture.
Anything efficient and profitable is bad. So if, like me, you live
in San Francisco you have to drive for 15 minutes and give your
tax dollars to Daly City if you want to go to Home Depot. They
finally gave up trying to open a store in San Francisco after 9
years of trying. Of course a Walmart, Ikea or Target is
unthinkable. And even Starbucks has problems opening new
stores since they (big) compete too effectively against local
coffee shops (small, thus good by definition). The reality is that
some small coffee shops (like Ritual Roasters) are among the best

270

in the US, and a Starbucks next door wouldn’t do well; and for
some a Starbucks in the area would be an improvement. But in
any case it makes more sense to let the customers of coffee shops
decide who is good rather than the board of supervisors trying to
burnish their progressive credentials.

Those two things together—much commerce is out of the city,
many inhabitants work outside the city—are warnings that San
Francisco is not heeding. San Francisco already has one big
problem (as do many cities) that housing is really expensive (at
least partially due to economically illiterate policies like rent
control and excessive political interference in the planning
process making it difficult to build any new housing) and the
public schools are crappy. So when a resident has a family, they
have to be rich to afford a large enough house and a private
school, or they move out. So every year San Francisco can close
some schools since there are ever fewer children in the city;
famously there are more dogs than kids.

The trend, which is not good, is for San Francisco to depend
increasingly on three things: out of town rich people who live
elsewhere (often in Nevada due to California’s taxes) but like to
keep an apartment in San Francisco (about 20% of the people in
the building where I live are like that); people who live in San
Francisco and work somewhere else; and tourism. Two of those
three groups are spending a lot of money and generating a lot of
tax that San Francisco doesn’t get to see, but it does have a lot of
the costs associated with them. Of course, tourism brings dollars
in from outside but most of the employment it creates is not at the
high valued added end of the scale: restaurants, hotels and retail
largely generate low-productivity low-pay jobs.

Busboys for San Francisco; on-chip buses in Silicon Valley; wi-fi
equipped buses in between.

Patent trolls
CDMA is also another interesting oddity from a patent point of
view. Most patents are tiny pieces of incremental innovation that
form the many little pieces you need to build complex
technological products. You can’t build a semiconductor without

 271

violating thousands if not millions of patents. For example,
Motorola (Freescale now, I suppose) owned a patent on the idea
of filtering photoresist which surprisingly passed the non-obvious
test. This used to be a minor annoyance since the patents were
owned by other semiconductor companies, and the problem could
be resolved with a manageable payment or royalty and a cross-
license. After all, you don’t need to be in the business for long
before they can’t build anything without your patents. Now that a
huge number of patents are owned by so-called patent trolls,
people who have purchased patents for the explicit purpose of
trying to generate disproportionate licensing revenue, the cross-
licensing approach won’t always work and, as a result, the patent
system is effectively broken for technologies like semiconductor
(and EDA for that matter) that stand on the shoulders of those
who went before in ways too numerous to even take time to
examine.

Patents were a problem for GSM phone manufacturers since
companies like Philips and Motorola managed to design their
own patents into the standard. GSM had the concept of essential
and non-essential patents. An essential patent was one that you
couldn’t avoid: if you were compliant with GSM you were
violating the patent, something that "shouldn't happen." However,
the essential patent owners preferred to keep their heads down for
political reasons (don’t want those European governments telling
us off in public) and keep quiet about what patents they owned
until businesses were rich enough to be worth suing. For
example, Philips owned the patent on the specific vocoder (voice
encoder) used in GSM. Not the general idea of a vocoder, or that
type of vocoder, just the specific parameters used in GSM, for
which they would like about $1/phone. It was as if Ford owned
the patent on the order of the pedals in a car. Not the idea of an
accelerator, clutch and brake but the specific configuration of the
clutch to the left of the brake to the left of the accelerator. And
then got some car standardization authority to mandate that order
for all vehicles. Come to think of it, that’s pretty much what GM
did when they got the US government to mandate catalytic
converters for all cars, which required all car manufacturers to
license catalytic converter patents from a certain car
manufacturer beginning with G. And there was some of this with
Qualcomm too, since "everybody" knew that the main US

272

carriers would choose GSM, the almost world-wide standard,
until someone from the President's office apparently told them at
the last minute that it really ought to be a US standard.

People are smarter these days about making sure that patents
don’t get designed into standards. Look at the fuss over Rambus.
However, it is still a grey area. After all, nobody knows what
even their own company’s patent portfolio really covers. If
you’ve read a patent, you know how hard it is to tell what it
really says. You can only read the word “plurality” a limited
number of times before your eyes glaze over. And at the
company level, nobody knows the whole portfolio. If you are the
representative from, say, Nokia on some standardization
committee, then you can’t really guarantee that any particular
standard doesn’t violate any Nokia patents, and you are certainly
not going to sign up for guaranteeing never to sue, say, Samsung
over a patent violation. Especially as you are not the corporate
counsel, you are some middle level engineer assigned to a
standardization committee that may or may not turn out to be
strategically important.

But CDMA was a complete patent-protected technology more
like a blockbuster drug formula. You couldn’t do anything in
CDMA without licensing a portfolio of patents from Qualcomm
on whatever terms they felt like giving you. They invented the
entire technology and patented it before anyone else really knew
it was feasible. They sued Broadcom, they sued Ericsson, they
sued everyone and pretty much established that there was no way
around this no matter what. In 2G this wasn’t a big issue since
GSM doesn’t depend in any way on CDMA. But W-CDMA and
all the later technologies use various aspects of CDMA and so
Qualcomm is in the happy position of having a tax on every cell
phone.

Patents
The basic “tradeoff” in having a patent system is that without the
promise of some sort of state-sanctioned monopoly innovation
would be a something that would be underprovided. Let’s not
argue about that dubious point, and just take it as a given.

 273

Another positive for the system is that requiring the inventor
receiving the monopoly to disclose the details of the invention,
means that once the monopoly period ends then the details are
freely available for everyone to copy.

Let’s see how that seems to work in practice in the two industries
I know well, EDA and semiconductors.

I knew nothing about patents until the mid-1980s. I was at VLSI
Technology and we didn’t bother patenting stuff since we were
small and patenting was expensive. Once VLSI reached about
$100M in revenue, other semiconductor companies with large
patent portfolios (IBM, Motorola, TI, AT&T, Philips, Intel and so
on) came knocking on our door with a suitcase of patents, saying
we probably infringed some of them and would we please pay
several million dollars in licensing fees. We probably were
infringing some of them, who was even going to bother to try and
find out, so that first year the only negotiation was how much we
would pay. VLSI started a crash program to patent everything we
could, especially in EDA where we were ahead of the work going
on inside other semiconductor companies. When the patent
licenses came up for renewal we were in a much stronger
position. They were infringing our patents and how much were
they going to pay us. Well, how about we license your patents
and you license ours and no money (or at least a lot less) needs to
change hands? No lawyers on either side had any intention of
actually reading the patents, or disturbing their own engineers to
find out if they were infringed. It was patent licensing by the ton.

To me, in these industries patents seem to be entirely defensive
created purely on the basis that other people have patents and
therefore might seek license revenue. If there were no patent
system, both EDA and semiconductor would proceed exactly as
they do today. There may be the occasional patent that is so
valuable that it is created to attempt to get monopoly licensing
out of the rest of the industry (Rambus, Blueray) but these seem
to be mainly political issues around trying to get proprietary
technology into standards. Most patents are incremental
improvements on existing technology that are created only for
defensive reasons, with no expectation of ever truly licensing
anyone or even going looking for infringement. Every company

274

needs a portfolio of patents so that when other players in the
industry come seeking license royalties, the “victim” has a rich
portfolio that the licensor is probably violating and so the
resolution is some sort of cross-license pact. There is some
genuine licensing of patents in semiconductor, but none that I
know of in EDA.

As to patents being a way of disseminating information, there are
two problems. The first is that in semiconductor and EDA,
waiting 20 years for a patent to expire and then implementing the
protected invention using the patent as a guideline is laughable.
The timescales are just too long to matter in this industry, and
secondly, have you read a patent? There is no way you can really
discern what it even covers, let alone use it as a blueprint for
implementation. For example, Kernighan and Lin’s patent from
1969 on their well-known partitioning algorithm. My guess is
that every placement tool in every EDA suite violated this patent,
but was written without ever looking at the patent. It’s standard
graduate level graph optimization and has probably been
independently invented several times.

Patent law provides for damages in the event of patent
infringement. But willful patent infringement, when you know
that the patent exists, carries punitive triple damages. So the
advice I’ve always been given by lawyers is to tell my engineers
never to read any patents. That way, even if a patent is infringed
it is not being willfully infringed since there is no way for
whoever wrote the code, or whatever, to know that it was
violating that particular patent.

So the situation comes down to this: companies patent inventions
in order to have currency to negotiate with other companies with
patent portfolios and not to disclose important techniques to the
general public, and not because without the protection of a patent,
innovation in semiconductor and EDA would grind to a halt. It is
like mutual assured destruction in with nuclear weapons. The
purpose of all that effort and investment in nuclear weapons was
purely to ensure that they other guy’s weapons weren’t a threat.

Companies that purchase a few patents simply to demand
licensing fees, so-called patent trolls, violate this game. They are
like a terrorist with a nuclear bomb. No matter how many

 275

missiles we have to “cross-license” the terrorist isn’t interested.
At least when it was just companies threatening each other and
then cross-licensing the game wasn’t played with real money.
The shakedown of RIM (Blackberry) a year or so ago was a
complete indictment of the ridiculous situation we have got
reached.

So in EDA and semiconductor, patents are largely a joke. If they
didn’t exist, people would not be clamoring for them. There was
plenty of innovation in software in the 1960s when software was
not even patentable. Nobody cares about patents except for
defense, so for our industry patents are a cost not a benefit, a
distraction for engineers who could better be spending their time
engineering. In fact, I'd go further. If patents were actually
enforced, in the sense of requiring a license to be negotiated to
every patent actually violated, then innovation would grind to a
halt.

Where does everybody come from?
Where does all the brainpower that drives Silicon Valley come
from? The answer, by and large, is not from round here.

A good analogy I saw recently was with Hollywood. Where do
all those pretty young actresses come from? By and large, not
from Los Angeles. If you are pretty enough with some acting
talent living in a small town in the mid-West, Hollywood is
potentially your route to advancement. The odds aren’t that great,
of course, since pretty women aren’t a vanishingly small
percentage, and Hollywood doesn’t want all its actresses to look
like supermodels anyway.

Silicon Valley draws in intellectual firepower in the same way. In
fact in an even bigger way since we don’t care what race you are
and whether your English is perfect. We draw in many of the
smartest people from all over the world, in many cases have them
do Masters degrees or PhDs here, and then employ them, to the
extent that our grandstanding politicians will allow (which is not
the topic for today).

276

I remember studying a 240 person engineering group I was
responsible for and I estimated that over half of them were born
outside of the US: a lot of Indians, of course, Vietnamese and
Chinese. But also French, English, South American, Egyptian.
Pretty much everywhere. Of the people who were brought up in
the US, a big percentage seemed to be from the mid-West just as
in the Hollywood example above. That was a surprise.

This isn’t meant to be a criticism of California’s K-12 education
system, although there is certainly plenty of criticism to go round,
especially for the bureaucrats and the venal teacher’s unions. But
if you are brought up around here (or in New York, Boston and
so on), you have lots of options and working really hard in high-
school so that you can go to college and work on a really hard
engineering degree might not be that attractive. But if you are in
a small town in the middle of an agricultural state, or a large town
in India, with little in common with your peers due to your
geekiness, then this seems like the a good way to escape. It’s
probably not that deliberate a plan, teenagers are notorious for
acting in the moment, but, as Sam Lewis and Joe Young put it:
“How you going to keep them down on the farm after they've
seen Paree?” Well, Mountain View isn’t quite Paris but it’s not
Nowhereville either, and the weather is a lot nicer.

Politicians all over the world look at Silicon Valley and say “we
want one too.” But Silicon Valley is really self-sustaining,
sucking in intellectual talent from wherever it is found. Those
politicians want a film industry too.

But Silicon Valley and Hollywood both got started in another era
through a serious of chance events like Shockley preferring
California to New Jersey, and the early film industry wanting to
get as far away from Edison and his patent lawyers . Getting a
Silicon xxx or a film industry going in your state requires more
than just a few adjustments to the state tax code. The best talent,
even from your state, is going to California (so long as
California's appaling political leaders don't sell the entire state to
the public sector unions).

Silicon Valley, the Hollywood of the North.

 277

Public affluence private squalor
California. Unions actually behave just the way that you would
expect them to, to maximize their own power. The California
democratic politicians, meanwhile, have gerrymandered
themselves a permanent incumbent majority and they are
supported by those same unions. So they go along with expansion
of spending year after year, and expansion of salaries and,
especially, benefits. Everyone gains except the private sector
taxpayers, who get screwed.

I think that the political-union complex is completely out of
control in the public sector, and is a major threat to Silicon
Valley's continued long-term success. We are on a path to private
squalor and public affluence in California. The private sector will
have to fund all the promises that the politicians made over the
years, in a massive transfer of wealth from the poor (retirees
living on their savings and people making average salaries) to the
rich (public sector retirees).

The cities of Vallejo went bankrupt recently, entirely due to
firefighter and police salaries and benefits, especially retirees
where they have lots of retired employees on six-figure salaries
and unlimited medical benefits for life. Vallejo has 120,000
residents but $850M of unfunded retiree commitments to the
police and firefighters. That’s around $25,000 per household.
Those people probably also owe at least that much in unfunded
public sector retiree benefits at the state level too. Many other
cities are predicted to go bankrupt in the current downturn, since
it’s the only way they have a chance to re-negotiate those gold-
plated contracts.

A friend of friend works in finance for the Santa Clara school
district. Every teacher they employ costs $180,000 per year.
About a third of that is salary and medical benefits but the rest is
their retirement benefits, which Santa Clara is smart enough not
to leave unfunded to create a future disaster. I wish someone was
putting away over $100,000 per year for my retirement.

There’s not really any good way to measure prison guard
productivity, but in education there is. Over the last 20 years,

278

adjusted for inflation, California’s spending on education has
doubled. But standards are exactly where they were 20 years ago
according to the state’s tests. In what other industry has
productivity halved? The best part of California’s education
system is actually the universities and community colleges. But
that part is now threatened because all the money is going to the
inefficient K-12 segment where, in principle, we could cut
spending by 50% with no effect on outcomes. Stanford is a
private university, but Berkeley, UCLA and so on are not. If they
lose their stars then it will certainly affect Silicon Valley.

Since Arnold Schwarzenegger was elected governor in 2003,
California’s spending has increased by 40% because so much of
the budget is on autopilot, driven by various propositions or by
existing contracts. What that means is that we could reduce
California’s budget by a bout a third and it would be something
like 2001 again. It didn’t seem bad back then after all.

 279

